U402491 N皇后问题

题目传送门 

题目描述

一个n×n的国际象棋棋盘,有n个皇后被放置在棋盘上,使得每两个皇后之间不能直接吃掉对方(每行、每列和两个对角线有且只有一个皇后)。

输入格式

一个n,代表棋盘大小(n*n)和皇后个数

输出格式

按给定顺序和格式输出所有N皇后问题的解

输入输出样例

输入 #1

8

输出 #1

No. 1
Q.......
....Q...
.......Q
.....Q..
..Q.....
......Q.
.Q......
...Q....
No. 2
Q.......
.....Q..
.......Q
..Q.....
......Q.
...Q....
.Q......
....Q...
...以下省略

说明/提示

4<=n<=12

先通过八皇后问题理解

问题表述为:在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一或同一斜线上,问有多少种摆法?(条件:每一行、每一列、主副对角线上只能有一个皇后。 而且一定是有解的。)
思路不难。肯定的是,最终每行只有一个皇后,那么可以以行数为大基准逐行搜索,对第n行0搜索时,依次对每一列进行搜索,一旦找到满足条件的位置,就跳到下一行继续搜索,如果一行中的8列都不能满足条件就返回上一行,继续搜索,直到找到满足条件的一条路径(一种摆法)。然后跳出这条路径,到第一行下一个符合的元素继续搜索。

 

 所以,由题意得N皇后问题即在n×n格的国际象棋上摆放n个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一或同一斜线上,问有多少种摆法?根据如上图的搜索与回溯过程求解。

思路讲解

显然是一个搜索问题,而且看提示n不超过10,说明复杂度很高,只能搜索,用回溯法可以解决。逐行确定皇后的位置,如此只需要判断皇后的上-下方,左上-右下,右上-左下三条线上是否有别的皇后,如果有就看下一列,没有就去下一行选位置。

所以

#include<bits/stdc++.h>//推荐用万能头
using namespace std;
int q[25],c=0;
void t(int n)//输出函数
{
	int i,j;
	c++;
	cout<<"No."<<c<<endl;
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=n;j++)
		{
			if(q[i]!=j)cout<<".";
			else cout<<"Q";
		}
		cout<<endl;
	}
}

int f(int i,int k)//判断函数,当然用bool也行
{
	int j=1;
	while(j<i)
	{

		if(q[j]==k||abs(j-i)==abs(q[j]-k))return 0;
		j++;
	}
	return 1;
}
void p(int k,int n)//递归函数
{
	int j;
	if(k>n)t(n);
	else
	{
		for(j=1;j<=n;j++)
		{
			if(f(k,j))
			{
				q[k]=j;
				p(k+1,n);
			}
		}
	}
}
int main()
{
	int n;
	cin>>n;
    p(1,n);
	return 0;
}

如有错误,欢迎大家评论区指出!感谢!

回溯算法可以用来解决n皇后问题n皇后问题是指在n×n的棋盘上放置n个皇后,使得它们互相不能攻击到对方。每个皇后位于不同的行和列,而且不能在同一条对角线上。 回溯算法的思想是通过递归和回溯的方式遍历所有可能的解空间,并判断当前的解是否符合要求。具体的步骤如下: 1. 创建一个长度为n的数组pos,用于记录每个皇后应该放置的列数。 2. 定义一个judge函数,用于判断当前位置是否能放置皇后。在判断过程中,需要遍历已经放置的皇后,检查是否有冲突(同列或同对角线上不能放皇后)。 3. 定义一个backtrack函数,用于遍历每一行的可能位置。如果已经遍历到了最后一行,说明已经排好了一组解,将解的数量加1并输出解。否则,遍历当前行的所有列,将皇后放置在该列上,并调用judge函数判断是否能放置。如果能放置,则继续递归调用backtrack函数处理下一行。如果不能放置,则回溯到上一行重新选择位置。 <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [n皇后问题(回溯法)](https://blog.csdn.net/weixin_44607113/article/details/126095584)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [回溯算法——n皇后问题](https://blog.csdn.net/weixin_59367964/article/details/127986711)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [回溯法-N皇后问题](https://blog.csdn.net/u010520146/article/details/115521176)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值