题目描述
一个n×n的国际象棋棋盘,有n个皇后被放置在棋盘上,使得每两个皇后之间不能直接吃掉对方(每行、每列和两个对角线有且只有一个皇后)。
输入格式
一个n,代表棋盘大小(n*n)和皇后个数
输出格式
按给定顺序和格式输出所有N皇后问题的解
输入输出样例
输入 #1
8
输出 #1
No. 1 Q....... ....Q... .......Q .....Q.. ..Q..... ......Q. .Q...... ...Q.... No. 2 Q....... .....Q.. .......Q ..Q..... ......Q. ...Q.... .Q...... ....Q... ...以下省略
说明/提示
4<=n<=12
先通过八皇后问题理解
问题表述为:在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一或同一斜线上,问有多少种摆法?(条件:每一行、每一列、主副对角线上只能有一个皇后。 而且一定是有解的。)
思路不难。肯定的是,最终每行只有一个皇后,那么可以以行数为大基准逐行搜索,对第n行0搜索时,依次对每一列进行搜索,一旦找到满足条件的位置,就跳到下一行继续搜索,如果一行中的8列都不能满足条件就返回上一行,继续搜索,直到找到满足条件的一条路径(一种摆法)。然后跳出这条路径,到第一行下一个符合的元素继续搜索。
所以,由题意得N皇后问题即在n×n格的国际象棋上摆放n个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一或同一斜线上,问有多少种摆法?根据如上图的搜索与回溯过程求解。
思路讲解
显然是一个搜索问题,而且看提示n不超过10,说明复杂度很高,只能搜索,用回溯法可以解决。逐行确定皇后的位置,如此只需要判断皇后的上-下方,左上-右下,右上-左下三条线上是否有别的皇后,如果有就看下一列,没有就去下一行选位置。
所以
#include<bits/stdc++.h>//推荐用万能头
using namespace std;
int q[25],c=0;
void t(int n)//输出函数
{
int i,j;
c++;
cout<<"No."<<c<<endl;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(q[i]!=j)cout<<".";
else cout<<"Q";
}
cout<<endl;
}
}
int f(int i,int k)//判断函数,当然用bool也行
{
int j=1;
while(j<i)
{
if(q[j]==k||abs(j-i)==abs(q[j]-k))return 0;
j++;
}
return 1;
}
void p(int k,int n)//递归函数
{
int j;
if(k>n)t(n);
else
{
for(j=1;j<=n;j++)
{
if(f(k,j))
{
q[k]=j;
p(k+1,n);
}
}
}
}
int main()
{
int n;
cin>>n;
p(1,n);
return 0;
}
如有错误,欢迎大家评论区指出!感谢!