题目背景
借助反作弊系统,一些在月赛有抄袭作弊行为的选手被抓出来了!
题目描述
现有 22n×2n(n≤10) 名作弊者站成一个正方形方阵等候 kkksc03 的发落。kkksc03 决定赦免一些作弊者。他将正方形矩阵均分为 4 个更小的正方形矩阵,每个更小的矩阵的边长是原矩阵的一半。其中左上角那一个矩阵的所有作弊者都将得到赦免,剩下 3 个小矩阵中,每一个矩阵继续分为 4 个更小的矩阵,然后通过同样的方式赦免作弊者……直到矩阵无法再分下去为止。所有没有被赦免的作弊者都将被处以棕名处罚。
给出 n,请输出每名作弊者的命运,其中 0 代表被赦免,1 代表不被赦免。
输入格式
一个整数 n。
输出格式
2n×2n 的 01 矩阵,代表每个人是否被赦免。数字之间有一个空格。
输入输出样例
输入 #1复制
3
输出 #1复制
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
思路:
很明显的递归,但我不知道x,y怎么记录
记录长方形边长,x,y值然后递归,分成4份
只有当边长为2时,记录左上角为0,然后结束
代码:
#include <iostream>
using namespace std;
int a[1025][1025];
int ksm(int x,int y){
int sum=1;
while(y){
if(y&1)sum*=x;
x*=x;
y>>=1;
}
return sum;
}
void s(int z,int x,int y){
if(z==2){
a[x][y]=0;
return ;}
for(int i=x;i<=x+z/2-1;++i){
for(int j=y;j<=y+z/2-1;++j){
a[i][j]=0;
}
}
s(z/2,x+z/2,y);
s(z/2,x,y+z/2);
s(z/2,x+z/2,y+z/2);
}
int main()
{
int n;cin>>n;
int m=ksm(2,n);
for(int i=1;i<=m;++i){
for(int j=1;j<=m;++j){
a[i][j]=1;
}
}
s(m,1,1);
for(int i=1;i<=m;++i){
for(int j=1;j<=m;++j){
if(j!=m)cout<<a[i][j]<<" ";
else cout<<a[i][j]<<"\n";
}
}
return 0;
}