仓库选址
题目描述
牛能在某小城有了固定的需求,为了节省送货的费用,他决定在小城里建一个仓库,但是他不知道选在哪里,可以使得花费最小。
给出一个�×�m×n的矩阵,代表下一年小城里各个位置对货物的需求次数。我们定义花费为货车载货运输的距离,货车只能沿着水平或竖直方向行驶。
输入描述:
首先在一行中输入�,�≤10T,T≤10,代表测试数据的组数。
每组输入在第一行给出两个正整数�,�,1≤�,�≤100n,m,1≤n,m≤100,分别代表矩阵的宽和高。
接下来m行,每行n个不超过1000的数字,代表矩阵里的元素。
输出描述:
每组输入在一行中输出答案。
示例1
输入
复制
3 2 2 1 1 1 0 4 4 0 8 2 0 1 4 5 0 0 1 0 1 3 9 2 0 6 7 0 0 0 0 0 0 0 1 0 3 0 1 2 9 1 2 1 2 8 7 1 3 4 3 1 0 2 2 7 7 0 1 0 0 1 0 0 0 0 0 0 0
输出
2 55 162
备注:
送货时只能单次运输,若该位置需要3次,货车必须跑3次。
即使该位置需要被送货,我们仍然可以选择该位置作为仓库。
思路:前缀和
若仓库在点 (x,y) 处,现在将仓库移动到点 (x+1,y) ,那么对于左上角为 (1,1),右下角为 (x,m) 的矩阵,所有点到达仓库的距离都 +1,对于左上角为 (x+1,1),右下角为 (n,m) 的矩阵,所有点到达仓库的距离都 −1。若仓库在点 (x,y) 处,现在将仓库移动到点 (x,y+1) 同理计算即可
代码:
#include<bits/stdc++.h>
using namespace std;
int a[105][105],s[105][105];
int qz(int x,int y,int x1,int y1){//二维差分
return s[x1][y1]-s[x-1][y1]-s[x1][y-1]+s[x-1][y-1];
}
void solve(){
int n,m;cin>>m>>n;
int ans=0x3f3f3f3f;
int sum=0;
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j){cin>>a[i][j];
sum+=a[i][j]*(i-1+j-1);//总距离之和
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];//(1,1)到(m,n)的前缀和
}
}
for(int i=1;i<=n;++i){//遍历n,m
int next=sum;//恢复总距离
for(int j=1;j<=m;++j){
ans=min(ans,next);//取最小
next+=qz(1,1,n,j)-qz(1,j+1,n,m);//该行每个数作为地址的话费
//(x,j)变到到(x,j+1)即(1,1)到(n,j)的前缀和+1,(1,j+1)到(n,m)的前缀和-1,
}
sum+=qz(1,1,i,m)-qz(i+1,1,n,m);//总距离与上转移同理
}
cout<<ans<<endl;
}
int main(){
int t;cin>>t;
while(t--){
solve();
}
}