自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(141)
  • 收藏
  • 关注

原创 请编写一个Python程序,实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络多输入单输出回归预测功能。

实现一个基于鲸鱼优化算法(WOA)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)的多输入单输出回归预测功能是一个复杂的任务,涉及到多个步骤和组件。由于完整的实现会非常冗长,我将提供一个简化的框架和关键部分的代码示例,帮助你理解如何实现这个功能。请注意,这个示例不会包含所有细节,比如数据集的准备、鲸鱼优化算法的具体实现(WOA是一个元启发式算法,需要单独实现或引用现有库),以及CNN-BiLSTM模型的具体构建和训练过程。你需要根据实际需求填充和完善这些部分。

2024-12-14 13:39:28 898 1

原创 【机器学习】在不确定的光影中:机器学习与概率论的心灵共舞

机器学习是计算机系统为了有效地执行特定任务,不使用明确的指令,而依赖模式和推理使用的算法和统计模型的科学研究。它被视为人工智能的一个子集,主要关注如何让计算机从数据中学习出某种模式,从而实现对未知数据的预测和分类。机器学习算法构建一个基于样本数据的数学模型,称为“训练数据”,以便在没有明确编程来执行任务的情况下进行预测或决策。

2024-12-14 13:26:44 1097

原创 学习threejs,dds格式图片文件贴图

要在Three.js中使用DDS格式的图片文件作为贴图,你需要加载和解析该文件,并将其应用于你的模型或材质。首先,确保你已经引入了DDSLoader.js文件,它是Three.js的一个扩展插件,用于加载和解析DDS格式的图片文件。然后,创建一个新的DDSLoader实例,并使用它来加载DDS图片文件。加载完成后,你可以将这个texture对象应用于你的模型或材质。如果你使用的是其他类型的材质,可以根据Three.js文档中的相应材质类型进行修改。

2024-12-14 13:01:39 729

原创 用python调用股票的数据分析库

seaborn:seaborn是Python中一个基于matplotlib的高级数据可视化库,提供了更美观的统计图形和图表样式。pandas:pandas是Python中一个强大的数据分析库,提供了丰富的数据结构和数据分析工具。使用这些库,可以进行股票数据的读取、处理、分析和可视化,以及进行机器学习模型的建立和预测。3.**alpha_vantage**:用于从AlphaVantage获取实时数据和历史数据。4.**TA-Lib**:技术分析库,包含许多常用的技术指标。首先,你需要安装这些库。

2024-12-13 10:21:04 1188

原创 使用python模拟请求微信小程序的登陆并签到

3.**服务器请求微信服务器**:开发者服务器使用`code`加上appid和appsecret请求微信服务器,获取`openid`和`session_key`。4.**生成自定义登录态**:开发者服务器将`openid`和`session_key`加密后返回给小程序,作为自定义登录态。在小程序端,通过`wx.login()`获取`code`,然后通过网络请求将`code`发送给你的服务器。1.**安全性**:确保服务器端对`code`的处理以及自定义登录态的生成和验证是安全的。

2024-12-13 10:07:14 1708

原创 如何用Python模拟交通灯控制

为了模拟交通灯控制,我们可以使用Python中的`time`模块来控制灯的切换时间,并使用简单的打印语句或图形界面库(如`tkinter`)来显示灯的状态。5.**定义交通灯模拟函数**:`traffic_light_simulation()`函数中使用一个无限循环来模拟红灯、黄灯和绿灯的切换,并通过调用`draw_light()`函数更新画布。然后,你可以使用一个循环来模拟交通灯的工作过程。2.**定义交通灯的颜色**:使用变量`RED`,`YELLOW`,`GREEN`来表示交通灯的三种颜色。

2024-12-13 10:00:14 1181

原创 使用python 语句编写一段程序,使用场景是检索本地电脑的.lic后缀的文件并且复制至一个文件夹

为了实现检索本地电脑中所有 `.lic` 后缀的文件,并将它们复制到一个指定的文件夹,你可以使用 Python 的 `os`、`shutil` 和 `fnmatch` 库。程序会找到 `sample1.lic` 和 `license.lic` 文件,并将它们复制到 `C:\Users\User\Desktop\LicFiles\` 目录中。- 在开始复制文件之前,程序会检查目标目录是否存在。- 程序会提示你输入源目录(要搜索 `.lic` 文件的目录)和目标目录(要将 `.lic` 文件复制到的目录)。

2024-12-12 10:56:50 905

原创 用python程序写一个爬虫小案例,使用场景输入手机号 获取验证码

1. **URL 和请求头**:我们将目标 URL 设置为 `https://example.com/api/send_code`,并设置了请求头 `User-Agent` 和 `Content-Type`,以模拟浏览器发送的请求。同时,请务必遵守法律和道德规范,确保爬虫行为合法合规。3. **发送请求**:我们使用 `requests.post()` 发送 `POST` 请求,并检查返回的状态码。2. **请求参数**:请求参数 `data` 中包含了手机号(`phone`),这是要发送到服务器的数据。

2024-12-12 10:48:13 2357 1

原创 python爬虫概念以及web基础知识

*网络爬虫(Web Crawler)**,也叫网络蜘蛛(Web Spider),是一种按照一定的规则,自动地抓取互联网上网页、数据、图片、视频等信息的程序或脚本。**Python 爬虫**是用 Python 编程语言实现的网络爬虫,利用 Python 提供的各种库和工具,能够高效、快速地从网页中抓取数据。**HTTP(HyperText Transfer Protocol,超文本传输协议)**是 Web 通信的基础协议,客户端和服务器之间的数据交换都是通过 HTTP 协议完成的。爬虫应该遵守该协议。

2024-12-12 10:35:28 1068

原创 掌握通过文本框,图像框实现计算结果的可视化

以下是一个通用的实现思路,假设你使用的是常见的编程语言和库,例如Python和它的GUI库(如Tkinter、PyQt)以及数据可视化库(如Matplotlib)。-**绘图函数**:点击“绘制数据”按钮后,`plot_data`函数会被调用,它会读取文本框中的数据,尝试将其转换为浮点数,然后使用Matplotlib绘制数据。在按钮的回调函数中,提取文本框中的输入,并执行相应的计算操作。QMessageBox.critical(self,"输入错误","请输入有效的数字列表,用逗号分隔。

2024-12-12 10:10:35 833

原创 一个页面用了里两个layui表格,但是只有一个表格的每行需要加单击事件,怎么处理?

layui` 提供了表格的事件绑定机制,你可以利用 `table` 模块的 `on` 方法来绑定行单击事件,并通过特定的选择器或表格的唯一标识来确保事件只应用到目标表格。- 通过 `lay-filter="table2"` 指定第二个表格的过滤器名称,然后在事件绑定时通过 `table.on('row(table)')` 指定只对该表格生效。- 在上面的示例中,第一个表格的 `lay-filter` 是 `"table1"`,第二个表格的 `lay-filter` 是 `"table2"`。

2024-12-11 11:23:39 1117

原创 在HTML代码中,创建了三个表单按钮,并分别为三个按钮添加了单击事件,分别是弹出对话框,输入对话框,选择对话框

输入对下面是一个包含三个按钮的HTML代码,每个按钮分别触发不同的对话框(弹出对话框、输入对话框、选择对话框):```html按钮和对话框示例// 弹出对话框(警告对话框)fu话框

2024-12-11 11:07:58 976

原创 掌握按钮的单击事件的实现机制

`ttk.Button(root,text="ClickMe",command=on_button_click)`创建一个按钮,并通过`command=on_button_click`将`on_button_click`函数绑定到按钮的单击事件上。在Tkinter中,按钮的单击事件是通过**回调函数**(callbackfunction)的机制来实现的。使用以上步骤,当用户单击按钮时,就会触发监听函数执行相应的操作。1.**定义回调函数**:首先你需要定义一个函数,这个函数会在按钮被点击时执行。

2024-12-11 10:48:17 936

原创 tkinter写一个用户输入框用户点击按钮后返回用户选择的文件路径

在Tkinter中,可以使用`filedialog`模块来让用户选择文件,并通过一个按钮点击事件获取用户选择的文件路径,然后将其显示在输入框或标签中。当用户点击按钮时,会弹出一个文件选择对话框,用户选择文件后,文件的路径会显示在输入框中。点击按钮会打开文件选择对话框,用户可以选择一个文件,选中的文件路径将显示在文本输入框中。-`ttk.Button(root,text="SelectFile",command=on_button_click)`创建一个按钮,并指定点击按钮时调用的函数。

2024-12-11 10:38:23 1225

原创 使用TKinter设计一个有三个文本输入框,三个按钮控件的界面

`on_button1_click`,`on_button2_click`,`on_button3_click`这些函数分别获取对应输入框的文本内容并打印出来。-`ttk.Button(root,text="Button1",command=on_button1_click)`创建按钮,并指定点击按钮时调用的函数。-`.pack(pady=10)`使用`pack`布局管理器来放置输入框,并设置垂直间距。-`.pack(pady=5)`使用`pack`布局管理器来放置按钮,并设置垂直间距。

2024-12-11 10:26:44 980

原创 用 Python 的 Tkinter 模块来创建一个窗口,窗口有保存按钮,有输入框,有任务栏,菜单栏,将窗口进行分栏

help_menu.add_command(label="关于",command=lambda:messagebox.showinfo("关于","Tkinter示例程序"))help_menu.add_command(label="关于",command=lambda:messagebox.showinfo("关于","Tkinter示例程序"))label=tk.Label(right_frame,text="右侧内容",font=("Arial",16))

2024-12-10 13:33:37 1006

原创 掌握输入框、按钮等Tkinter控件对象布局,实现数据的界面输入

tk.Label(root,text="姓名:").grid(row=0,column=0,padx=10,pady=10)tk.Label(root,text="年龄:").grid(row=1,column=0,padx=10,pady=10)tk.Label(root,text="姓名:").grid(row=0,column=0,padx=10,pady=10)2.**布局管理器**:如`pack()`、`grid()`和`place()`,用于组织控件在窗口中的位置。

2024-12-10 13:19:11 907

原创 掌握Tkinter模块图形界面开发的基本原理

**Widget(组件)**:Tkinter中的基本构建块,如按钮、标签、文本框等。-**RootWindow(根窗口)**:每个Tkinter应用的顶层窗口。-**Event(事件)**:用户与界面交互的动作,如点击按钮、输入文本等。-**EventHandling(事件处理)**:对用户动作的响应机制。-**grid()**:网格布局,将组件放置在行和列中,非常灵活。-**Frame**:框架,用于组织其他组件。-**Button**:按钮,用于触发事件。-**Radiobutton**:单选按钮。

2024-12-10 12:58:50 911

原创 将抓取结果进行可视化展示

要将抓取结果进行可视化展示,你可以根据数据的类型和想要展示的效果选择合适的工具和方法。-**Python库**:Matplotlib,Seaborn,Plotly,Bokeh。-**交互式图表**:可以保存为HTML文件或部署到Web服务器。-**热力图**:适合展示数据的密集程度或相关性。-**柱状图/条形图**:适合展示分类数据对比。-**散点图**:适合展示两个变量之间的关系。-**饼图/环形图**:适合展示比例和组成。-**折线图**:适合展示时间序列数据。#假设抓取的数据存储在一个CSV文件中。

2024-12-10 12:41:58 627

原创 使用pandas包实现对抓取数据的文件存储

结合之前使用`requests`和`BeautifulSoup`抓取的网页数据,我们可以使用`Pandas`来高效地处理和存储这些数据。通过结合`requests`、`BeautifulSoup`和`Pandas`,你可以轻松地抓取网页内容并将其存储为多种文件格式,如CSV、Excel、JSON和SQL等。`Pandas`的`DataFrame`是一个二维的表格型数据结构,非常适合处理结构化数据。我们遍历网页中的所有链接``标签,提取链接的文本和URL,并将这些数据存储到`data`列表中。

2024-12-08 11:36:18 852

原创 使用Beautiful soup 对象中的方法实现对网页内容的抓取

requests`负责获取网页的HTML内容,而`BeautifulSoup`负责解析和提取其中的数据。如果网页内容是通过JavaScript动态加载的,单纯使用`requests`和`BeautifulSoup`可能无法抓取到这些内容。结合`requests`库,你可以首先使用`requests`获取网页内容,然后使用`BeautifulSoup`解析和抓取其中的数据。使用`soup.find_all('a')`获取所有``标签,然后遍历这些标签,提取`href`属性和链接文本。

2024-12-08 11:08:21 941

原创 用requests对象设计实现一个简单的计算加减乘除运算的网页程序

为了实现一个简单的网页计算器程序,能够进行加、减、乘、除运算,我们可以使用`Flask`(一个轻量级的PythonWeb框架)来创建网页应用,并结合`requests`对象来处理用户通过表单或URL参数提交的运算请求。默认情况下,Flask会在`http://127.0.0.1:5000/`启动你的应用。首先,确保安装了`Flask`。-输入`10`和`2`,选择“除法”,点击计算,页面会显示结果`5`。-输入`5`和`3`,选择“加法”,点击计算,页面会显示结果`8`。

2024-12-08 10:58:37 825

原创 使用Requests对象实现网页内容的获取

相比Python内置的`urllib`库,`Requests`更加简洁、易用且功能强大。通过上面的例子,你应该能够掌握如何使用`Requests`库来发送GET和POST请求、处理超时、重定向、cookies、以及解析JSON响应等操作。如果你想禁止自动重定向,可以将`allow_redirects`参数设置为`False`。有些API返回的是JSON格式的数据,可以使用`response.json()`方法直接解析为Python字典。通过`timeout`参数可以控制请求的最长等待时间。

2024-12-08 10:39:01 2177

原创 掌握Beautiful Soup 对象的使用方法

BeautifulSoup`对象是该库的核心,通过解析HTML或XML文档生成,用于查找和提取数据。首先,你需要安装`BeautifulSoup`和一个解析器,比如`lxml`或`html.parser`。获取元素的属性和文本内容:可以使用Beautiful Soup对象的属性和方法来获取元素的属性和文本内容。遍历文档树:使用Beautiful Soup对象的属性和方法可以遍历文档树的各个节点。修改和删除元素:可以使用Beautiful Soup对象的属性和方法来修改和删除元素。

2024-12-08 10:23:25 1044

原创 详细解答一下pandas库对excel文件的操作方法

在处理Excel文件时,`pandas`使用`openpyxl`或`xlsxwriter`等引擎来读取和写入Excel文件。`pandas`本身不支持复杂的样式操作,但可以通过`openpyxl`或`xlsxwriter`来实现带样式的Excel文件操作。`pandas`提供了`to_excel`方法将`DataFrame`写入Excel文件。`pandas`提供了`read_excel`函数来读取Excel文件。-`engine`:指定使用的引擎,可以选择`openpyxl`或`xlsxwriter`。

2024-12-07 16:46:05 1640

原创 使用pandas库实现对抓取结果的文件存储

我们可以将抓取的搜索结果(例如标题、链接、摘要等)解析并存储到一个`pandas`DataFrame中,然后将该DataFrame保存到文件(如CSV、Excel、JSON等格式)。#解析搜索结果(标题、链接、摘要等)forresultinsoup.select('.result'):#百度搜索结果的class为.resulttitle=.select_one('.ta').text.strip()#标题。3.脚本会抓取百度搜索结果,并将结果到`search_results_百度.csv`文件中。

2024-12-07 16:34:12 1282

原创 使用百度搜索接口和requests库,输入任意关键词,获取网页HTML编码。

要使用百度搜索接口和`requests`库来获取指定关键词的网页HTML内容,你可以按照以下步骤操作。-**url**:百度搜索的接口URL,通常是`https://www.baidu.com/s`。-**requests.get()**:使用`requests`库发送GET请求。-**headers**:添加请求头伪装成浏览器访问,防止被识别为机器人。-**params**:查询参数,`wd`是百度搜索的关键字参数。-**response.text**:获取网页的HTML内容。

2024-12-07 16:17:31 1650

原创 使用requests包实现对网页HTML代码的获取

在Python中,`requests`是一个非常流行的用于发送HTTP请求的库,它能够轻松获取网页的HTML代码。`requests`库的设计简洁易用,非常适合初学者和专业开发者使用。结合`requests`和`lxml`库(用于解析HTML和XML),你可以获取网页内容并使用XPath解析其中的数据。2.**发送请求**:使用`requests.get()`或`requests.post()`发送HTTP请求。1.**安装`requests`**:通过`pipinstallrequests`安装库。

2024-12-06 12:28:11 985

原创 掌握XPath(XML路径语言)方法原理

`/bookstore/book/title[@lang='en']`:选择`bookstore`元素下所有`title`子元素中`lang`属性为`en`的`book`子元素。-`/bookstore/book[contains(title,'XML')]`:选择`bookstore`元素下所有`title`元素中包含`XML`的`book`子元素。-`/bookstore/book[price>9.95]`:选择`bookstore`元素下所有`price`子元素值大于9.95的`book`子元素。

2024-12-06 12:17:14 1059

原创 掌握爬虫概念及其工作原理

*网络爬虫**(WebCrawler),也称为**网络蜘蛛**(WebSpider)或**网络机器人**(WebRobot),是一种自动化程序或脚本,其主要功能是按照一定的规则,自动地抓取和浏览互联网上的信息。爬虫从待抓取的URL列表中选择下一个URL,重复步骤2到步骤4,直到满足某种停止条件(例如,抓取了一定数量的网页,或者所有可访问的网页都已被抓取)。4. 解析网页:爬虫使用HTML解析器(如Beautiful Soup),将下载的网页进行解析,提取出需要的数据(例如文本、图片、链接等)。

2024-12-06 12:07:50 2321

原创 写一段基于python的,根据已有数据自动生成的自适应邻接矩阵实现代码

如果图是无向图,邻接矩阵应对称,因此在设置`adj_matrix[i][j]=1`时,也设置`adj_matrix[j][i]=1`。3.**生成邻接矩阵**:根据相似性或距离,判断节点之间是否存在边(如果距离小于某个阈值或相似性高于某个阈值,则认为存在边)。假设我们有一组二维坐标点作为节点的特征数据,我们将使用欧几里得距离来计算节点间的距离,并根据距离生成邻接矩阵。2.**计算节点间的相似性或距离**:根据节点的特征计算它们之间的相似性或距离。-`data`:节点的特征数据,这里假设是二维坐标点。

2024-12-05 11:21:09 1299

原创 有一个深度图像,不知道他的宽和高,背景为0,使用python如何把它转成点云数据

假设深度图的背景是0,表示没有有效的深度信息,我们可以根据相机的内参矩阵(相机固有参数)将二维图像的像素坐标(u,v)转换为三维世界坐标(x,y,z)。2.**获取相机的内参矩阵**:内参矩阵包括相机的焦距和光学中心,用于将图像坐标转换为三维坐标。你也可以使用其他库或格式来处理点云数据。3.**遍历深度图的每个像素**,根据深度值和相机内参矩阵计算对应的三维坐标。4.**生成点云数据**:将三维坐标保存为点云格式(如`.ply`文件)。-遍历深度图的每个像素,计算对应的三维坐标,并忽略深度为0的背景像素。

2024-12-05 11:08:31 1013

原创 网络神经架构的概念及其实际应用

*网络神经架构(NeuralNetworkArchitecture)**是指用于构建和组织人工神经网络(ArtificialNeuralNetworks,ANN)的结构和方法。5.**生成对抗网络(GenerativeAdversarialNetworks,GAN)**:由一个生成器和一个判别器组成,通过对抗训练的方式生成逼真的数据样本。4.**长短期记忆网络(LongShort-TermMemory,LSTM)**:是RNN的一种改进版本,能够有效解决RNN在长序列数据中梯度消失的问题。

2024-12-05 10:44:35 868

原创 用python写一段多输入变量卷积神经网络做时间预测的代码

为了使用多输入变量的卷积神经网络(CNN)进行时间序列预测,您可以设计一个多通道的CNN模型。以下是一个完整的示例代码,展示如何构建多输入变量的CNN模型来执行时间序列预测任务。-`generate_multivariate_data`函数生成一个包含多个特征的时间序列数据集,并创建一个正弦函数值作为目标变量。最后,我们使用训练好的模型对输入变量进行预测,并将预测结果存储在。-使用`Model`和`Input`构建多输入的卷积神经网络。-绘制训练过程中的损失曲线,观察模型的收敛情况。

2024-12-04 09:57:17 911

原创 python程序,运用卷积神经网络进行图片分类

这个示例使用`Keras`和`TensorFlow`,并使用著名的`CIFAR-10`数据集(包含10类物体的小图片)。请注意,这只是一个简单的示例,实际上,卷积神经网络的复杂性取决于你的任务和数据集的复杂性。为了使用Python和卷积神经网络(CNN)进行图片分类,您可以利用常用的深度学习库如`Keras`和`TensorFlow`。3.**正则化**:使用`Dropout`或`BatchNormalization`等技术,防止过拟合。-使用`Sequential`模型定义一个简单的卷积神经网络。

2024-12-04 09:44:12 1129

原创 使用python对神经网络分类和预测的结果进行可视化展示

以下是一个完整的示例,展示如何训练一个简单的神经网络分类模型,并对其结果进行可视化,包括训练过程的损失和准确率曲线、混淆矩阵以及ROC曲线等。通过这些可视化图表,您可以更直观地了解模型的训练过程和分类性能,从而进行进一步的优化和调整。-**训练过程的损失和准确率曲线**:显示训练集和验证集的损失和准确率变化情况。-**混淆矩阵**:显示分类结果的混淆矩阵,包括正确分类的数量和错误分类的数量。-**ROC曲线**:显示ROC曲线和AUC分数,以评估模型的分类性能。-绘制训练过程中的损失和准确率曲线。

2024-12-04 09:34:22 1347

原创 使用python多层感知机预测更多时刻的股票价格

6. 模型预测:在模型训练和评估完成后,你可以使用训练好的模型来进行未来股票价格的预测。-**预测未来价格**:使用训练好的模型来预测未来的股票价格,并且提供了一个函数`predict_future`用于多步预测。-**数据收集和准备**:示例中读取了一个CSV文件,你需要替换成实际的文件路径。2.**数据预处理**:对数据进行清洗和准备,以便用于训练MLP模型。5.**预测未来价格**:使用训练好的模型预测未来多个时刻的股票价格。-**数据预处理**:将数据归一化处理,并创建训练数据集。

2024-12-04 09:20:02 1029

原创 使用python多层感知机对图像分类

在这个例子中,我们将使用著名的**MNIST数据集**,它包含从0到9的手写数字图像(28x28灰度图像)。3.**使用其他数据集**:虽然这个例子使用了MNIST,但你可以使用相似的代码来处理其他图像分类任务,只需确保数据格式一致。1.**调整模型架构**:你可以尝试增加或减少隐藏层的神经元数量,或者添加更多的隐藏层,看看对模型性能的影响。1.**加载和预处理数据**:从Keras加载MNIST数据集,并进行必要的预处理,例如归一化。3.**编译和训练模型**:指定损失函数、优化器,并对模型进行训练。

2024-12-03 10:36:32 1095

原创 用python将矩阵行向量数据映射为均值为0、方差为1的标准正太分布,使得小数更小,大数更大

通过上述步骤,你可以将矩阵的行向量数据映射为均值为0、方差为1的标准正态分布,并且通过非线性映射使得小数值更小,大数值更大。2.**非线性映射**:为了实现“小数更小、大数更大”的效果,可以使用非线性函数对标准化后的数据进行映射。要将矩阵的行向量数据映射为均值为0、方差为1的标准正太分布,可以使用sklearn库的StandardScaler类。可以看到,原始矩阵的每个元素都被映射到均值为0、方差为1的标准正太分布中,小数变得更小,大数变得更大。将标准化后的矩阵数据应用非线性映射,得到最终结果。

2024-12-03 10:25:37 1075

原创 使用python构造图像(0,1 矩阵)数据和股票价格的时间序列数据

然后,我们使用`numpy.cumsum`和`numpy.random.normal`生成模拟的股票价格数据,这些数据从一个初始值100开始,并添加了一些随机变化。最后,我们使用`pandas`创建一个DataFrame来存储日期和价格,并使用`matplotlib.pyplot`绘制时间序列图。为了构造图像数据(0和1组成的矩阵)和股票价格时间序列数据,我们可以使用Python中的`numpy`和`pandas`库。我们可以使用`numpy`来生成一个由0和1组成的矩阵。plt.xlabel('日期')

2024-12-03 10:16:31 1008

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除