背包问题模板

01背包

特点:每件物品最多只能用一次

01背包问题

题意

给出每件物品的体积v,价值w,求解能装入背包的的物品的最大价值,并且每件物品只能选一次

思路

那么这道题就是典型的01背包问题,对于每件物品都存在两种状态,选还是不选。

就像以下图展现的那样,同时我们还要注意,在选择第i件物品时,要判断背包能否放得下。

在这里插入图片描述

代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[10000];
int f[10000][10000];
signed main()
{
	int n,m;
	cin>>n>>m;
	
	 for(int i=1;i<=n;i++)
	 {
	 	int v,w;
	 	cin>>v>>w;
	 	for(int j=0;j<=m;j++)
	 	{
	 		f[i][j]=f[i-1][j];
	 		if(j>=v)
	 		f[i][j]=max(f[i][j],f[i][j-v]+w);
		 }
	  } 
	  cout<<f[n][m]<<endl;
}

优化

现在我们对他进行优化,使用一维数组

1.将二维数组转换为一维数组

我们发现,在用二维数组进行计算时,我们的f[i] [j] 与f[i-1] [j] 时相互独立的,但换成一维数组后,f[j]并不能很好的区分f[i] [j] 与f[i-1] [j],所以我们使用逆序。

2.只有在j>=v时,才会选择第i件物品,那我们逆序结束标志就变成了j>=v。


#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[10000];
int f[10000];
signed main()
{
	int n,m;
	cin>>n>>m;
	
	 for(int i=1;i<=n;i++)
	 {
	 	int v,w;
	 	cin>>v>>w;
	 	for(int j=m;j>=v;j--)
	 	{//这里的f[i][j]=f[i-1][j]也去掉是因为用一维数组表示f[j]=f[j],没多大意义
	 		f[j]=max(f[j],f[j-v]+w);
		 }
	  } 
	  cout<<f[m]<<endl;
}

完全背包

特点:每件物品有无限个

题意

给出每件物品的体积v,价值w,求解能装入背包的的物品的最大价值,并且每件物品能选无限次。

思路

对于每件物品的状态,我们可以不选,也可以选k件

在这里插入图片描述

代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[10000];
int f[10000][10000];
void solve()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		int v,w;
		cin>>v>>w;
		for(int j=0;j<=m;j++)
		  for(int k=0;k*v<=j;k++)
		  f[i][j]=max(f[i][j],f[i-1][j-v*k]+w*k); 
	}
	cout<<f[n][m]<<endl;
}
signed main()
{
	int t=1;
//	cin>>t; 
	while(t--)
	solve();	
}

优化

代码优化

1.这样替换过后,就不必要开第三层循环。

在这里插入图片描述

2.我们再回顾01背包 f[i] [j] =max( f[i] [j], f[i-1] [j-v]+w)

那同样的我们可以将他准换一维数组,但有所不同的就是,我们不用再担心会将i-1个物品覆盖。

#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[10000];
int f[10000];
void solve()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		int v,w;
		cin>>v>>w;
		for(int j=v;j<=m;j++)
		  f[j]=max(f[j],f[j-v]+w); 
	}
	cout<<f[m]<<endl;
}
signed main()
{
	int t=1;
//	cin>>t; 
	while(t--)
	solve();	
}

多重背包

特点:每件物品可以用有限个

题意

给出每件物品的体积v,价值w,求解能装入背包的的物品的最大价值,并且每件物品的个数是有限的

思路

那我们就发现了,我们的多重背包与完全背包的朴素计算方法是类似的,唯一要注意的就是,我们第三层循环的k要小于等于物品个数。

代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[10000];
int f[10000][10000];
void solve()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		int v,w,s;
		cin>>v>>w>>s;
		for(int j=0;j<=m;j++)
		  for(int k=0;k*v<=j&&k<=s;k++)
		  f[i][j]=max(f[i][j],f[i-1][j-v*k]+w*k); 
	}
	cout<<f[n][m]<<endl;
}
signed main()
{
	int t=1;
//	cin>>t; 
	while(t--)
	solve();	
}
优化

那么这里就存在疑问了,为什么不能像完全背包一样优化?

在这里插入图片描述

将其展开我们发现,并不能通过知道五个数的最大值,推出来前4个数的最大值。所以这种优化方式是错的。

这里我们有一个小技巧,使用二进制去优化。

用二进制去打包这些物品,比如说我有10个物品,我按照二进制,将其打包成

1,2,4,以及最后剩下的3。这样我们去询问时,就是第一堆(1个)物品取还是不取,第二堆(2个)物品取还是不取…。也就是将他转换成了01背包的问题。

#include<bits/stdc++.h>
using namespace std;
#define int long long
int v[100000],w[100000];
int f[100000];
void solve()
{
	int n,m;
	cin>>n>>m;
	int cnt=0;
	for(int i=1;i<=n;i++)//在此处理分组问题,
	{
		int a,b,s;
		cin>>a>>b>>s;
		int k=1;//标记二进制的大小
		while(k<=s)
		{
			cnt++;//用来记录第几组
			v[cnt]=a*k;//每组的体重
			w[cnt]=b*k;//每组的价值
			s-=k;k*=2;//更新剩余数量,以及每组分配的大小
		 } 
		 if(s>0)//判断是否还有剩余的没有分配
		 {
		 	cnt++;
		 	v[cnt]=a*s;
		 	w[cnt]=b*s;
		  } 
	 } 
	 n=cnt;//更新
    //用01背包解决
	 for(int i=1;i<=n;i++)
	 {
	 	for(int j=m;j>=v[i];j--)
	 	{
	 		f[j]=max(f[j],f[j-v[i]]+w[i]);
		 }
	 }
	 cout<<f[m]<<endl;
	 
}
signed main()
{
	int t=1;
//	cin>>t; 
	while(t--)
	solve();	
}

分组背包

特点:每组最多可以选一个物品

题意

给出每件物品的体积与价值。每组有若干个物品,最多只能选一个,求解能装入背包的的物品的最大价值。

思路

在这里插入图片描述

代码

这里优化和上边类似,就不再描述了。

#include<bits/stdc++.h>
using namespace std;
#define int long long
int f[10000];
int v[11000][10000];
int w[10000][10000];
int s[100000];
signed main()
{
	int n,m;
	cin>>n>>m;
	
	 for(int i=1;i<=n;i++)
	 {
	 	cin>>s[i];
	 	for(int j=0;j<s[i];j++)
	 	{
	 		cin>>v[i][j]>>w[i][j];
		 }
	  } 
    for(int i=1;i<=n;i++)
    {
        for(int j=m;j>=0;j--)
            for(int k=0;k<s[i];k++)
            if(v[i][k]<=j)
                f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
    }
	  cout<<f[m]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值