新能源光伏数据集

感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。我国是全球最大的光伏市场和生产国,拥有庞大的产能和完整的产业链。政策支持、技术进步和成本下降推动了光伏发电的普及,光伏装机容量居全球首位,随着人工智能技术的应用,光伏行业将迎来更智能化、高效化的发展,为实现可持续发展目标做出更大贡献。

AI+新能源光伏数据可以促进光伏领域人工智能新技术的产、学、研、用,引领行业技术创新,助力光伏领域高质量发展。AI在新能源光伏领域有许多应用场景,如光伏电站全智能化运维、光伏发电预测与调度、光伏电池组件预测性维护、光伏系统智能故障诊断等等。因此小编在这里整理了一份AI+新能源光伏数据集,共包含6+细分场景数据集,助力AI+新能源光伏领域的研究与创新。

01

光伏电池板缺陷检测数据集

【数据背景】光伏电池板是太阳能发电系统的核心组件,用于将太阳能转化为电能。然而,制造过程中难免会出现一些缺陷,例如裂纹、热斑、暗电流等,这些缺陷可能导致电池板的性能下降,影响发电效率甚至缩短使用寿命。因此,光伏电池板缺陷检测成为了一个重要的业务需求。通过对光伏电池板进行缺陷检测,可以及早发现和识别存在的问题,有助于制造商在生产过程中进行及时调整和改进,确保光伏电池板的质量和性能达到预期标准。

【应用领域】AI+光伏板缺陷检测

【文件目录】包含以下3个数据文件:

/train: images包含训练光伏板样张,labels包含对应的缺陷标签txt文件

/valid:images包含验证光伏板样张,labels包含对应的缺陷标签txt文件

data.yaml:数据集信息说明

【数据说明】共包含光伏电池板制造企业提供的太阳能电池板2400+缺陷图片并进行了标注,按照4:1的比例拆分成训练集1920张和验证集480张,也可以自行划分训练集、验证集和测试集。图像样张中的缺陷标签共包含划痕、断栅与脏污在内的3类缺陷。

02

分布式光伏目标检测数据集

【数据背景】分布式光伏系统是一种将太阳能光伏电池板分布在建筑物、屋顶、地面等多个地点的发电系统。与传统集中式光伏系统相比,分布式光伏系统具有灵活性高、安装成本低、系统可靠性强等优势,因此在能源行业中得到了广泛应用。分布式光伏目标检测是指对分布式光伏系统中的光伏电池板进行目标检测和识别的过程。通过对分布式光伏系统中的光伏电池板进行目标检测,可以及时发现潜在的安全隐患,如火灾、漏电等,确保系统运行安全。

【问题描述】分布式光伏系统通常安装在建筑物、屋顶、地面等不同的环境中,背景干扰丰富多样,如树木、建筑物、云影等。这些复杂的背景干扰使得目标检测更加困难,容易出现误检或漏检的情况。另外,分布式光伏系统包含大量的光伏电池板,分布在不同的地点和角度,使得对整个系统进行目标检测和监测变得困难。需要高效的算法和系统来处理大规模的目标检测任务。

【文件目录】train、valid和test在内的3个数据文件夹

【数据描述】检测目标以Pascal VOC格式进行标注,对每个图像进行以下预处理,统一调整大小为512x512。数据集共包含4007+分布式光伏高空图像样张,其中train包含2701+图像样张及其对应的xml标注,valid包含883+图像样张及其对应的xml标注,test包含423+图像样张及其对应的xml标注。数据集至少75%的图像是附带annotations标注的,且未做数据增广。

03

并网光伏系统故障诊断数据集

【数据背景】并网光伏系统是指将光伏电站与电网相连,将太阳能转化的电能注入电网供电的系统。由于并网光伏系统中的光伏电池板、逆变器、配电设备等组件长期运行,可能会遇到各种故障和问题,如电池板损坏、逆变器故障、电网连接问题等。及时发现并解决并网光伏系统中的故障问题,可以提高系统的发电效率和性能,确保光伏电站按设计要求稳定运行,最大程度地发挥太阳能资源的利用效益。

【问题描述】并网光伏系统由多个组件组成,包括光伏电池板、逆变器、配电设备等。这些组件之间存在复杂的互联关系,故障可能涉及多个组件,导致故障诊断变得复杂和困难,每种故障类型可能需要采用不同的方法和技术进行诊断和修复,增加了故障诊断的复杂性。另外,并网光伏系统产生的数据量庞大,包括光伏电池板的输出电流、电压、温度等参数,逆变器的运行状态等,如何高效地提取有用的故障诊断信息,是一个具有挑战性的问题。

【应用领域】AI+光伏系统故障诊断

【文件目录】包含CSV_Files.zip,F0L.mat,F0M.mat,F1L.mat,F1M.mat,F2L.mat,F2M.mat,F3L.mat,F3M.mat,F4L.mat,F4M.mat,F5L.mat,F5M.mat,F6L.mat,F6M.mat,F7L.mat,F7M.mat在内的共15个数据文件

【数据说明】故障数据文件标记为“Fxy”,其中:x∈{0,1,…,6}表示故障场景:“0”是一个无故障的数据;“1”、…、“7”是7种类型的断层;y∈{'L','M'}表示运算模式:“L”是有限功率模式(IPPT);“M”是最大功率模式(MPPT),例如“F4M”是MPPT模式下的故障类型F4,“F1L”是IPPT模式中的故障类型F1。涉及的光伏系统故障类型包括光伏阵列故障、逆变器故障、网络异常、反馈传感器故障以及不同严重程度的MPPT控制器故障。

其中,每个数据文件包括以下列:

时间:以秒为单位的时间,平均采样T_s=9.9989μs

Ipv:光伏阵列电流测量

Vpv:光伏阵列电压测量

Vdc:直流电压测量

ia、ib、ic:三相电流测量

va、vb、vc:三相电压测量

Iabc:电流大小

If:当前频率

Vabc:电压大小

Vf:电压频率

04

光伏电池板语义分割数据集

【数据背景】光伏电池板作为太阳能发电的核心组件,在太阳能领域具有广泛的应用。然而,光伏电池板的正常运行和发电效率受到多种因素的影响,其中之一就是光伏电池板表面的污染和损坏。因此,对光伏电池板进行检测、监测和维护变得尤为重要。传统的光伏电池板检测方法主要依靠人工目视,这种方法耗时、费力,并且容易出现主观误判。而光伏电池板语义分割技术的应用可以有效地解决这些问题。通过对光伏电池板图像进行语义分割,可以自动、快速地将光伏电池板与背景进行分离,准确地提取出光伏电池板的区域。

【应用领域】AI+光伏板语义分割

【文件目录】共包含3个数据文件:

/train:训练集

/valid:验证集

/test:测试集

【数据描述】检测目标以Pascal VOC格式进行标注,对每个图像进行以下预处理,未做统一尺寸的处理。数据集共包含9785+分布式光伏图像样张,其中train包含8670+图像样张及其对应的xml标注,valid包含674+图像样张及其对应的xml标注,test包含441+图像样张及其对应的xml标注。数据集已做数据增广,具体情况如下:

Rotation: Between -15° and +15°

Brightness: Between -25% and +25%

Mosaic: Applied

05

光伏电池异常检测数据集

【数据背景】太阳能电池板组件由许多太阳能电池组成。太阳能电池会退化,导致许多不同类型的缺陷,其中重点关注两种不同类型的缺陷:裂纹和非活动区域。裂纹的大小可能从非常小的裂纹到覆盖整个电池的大裂纹。在大多数情况下,电池的性能不受此类缺陷的影响,因为裂纹区域的连通性得到了保留。非活动区域主要由裂纹引起,当电池的一部分断开连接。使得对发电没有贡献时,就会发生这种情况,导致电池性能大幅降低。

【应用领域】AI+光伏电池异常检测

【文件目录】共包含2个数据文件:

/images:原始光伏电池图像样张

train.csv:光伏电池异常标签

【数据描述】images包含异常的光伏电池数据,包含2000+光伏近红外光谱图像,train.csv用于存放标签,表明每张图片存在的异常。数据集未做数据增广,可自行进行训练集、验证集和测试集的划分。

光伏电池有划痕与失效区两种异常,两种异常构成了无缺陷、有裂纹无失效区、无裂纹有失效区、有裂纹有失效区在内的4类异常情况,因此数据集的异常标签就是上述的4大类。

06

光伏模组功率预测数据集

【数据背景】光伏模组功率预测是在光伏发电系统中对光伏模组产生的电力输出进行预测的一项关键业务。光伏发电系统利用太阳能将光能转化为电能,光伏模组是系统中的核心组件,负责将太阳光转化为直流电能。然而,光伏模组的输出功率会受到多种因素的影响,包括太阳辐射量、温度、阴影遮挡、灰尘积累等。在实际应用中,准确预测光伏模组的功率输出对于光伏发电系统的性能评估、运维管理和电力市场交易等方面非常重要。

【问题描述】光伏模组的输出功率受到多种因素的影响,包括太阳辐射量、温度、阴影遮挡、灰尘积累等。这些因素的变化对功率输出产生复杂而非线性的影响,使得准确预测光伏模组功率变得具有挑战性。建立准确的光伏模组功率预测模型需要考虑多个因素的相互作用和非线性关系,模型的建立和参数优化过程需要大量的实验数据和专业知识,增加了模型开发和调试的难度。

【应用领域】AI+光伏功率预测

【文件目录】PV_data_sample.csv

【数据说明】一个光伏模组一年的数据,数据已经脱敏,主要由以下9个属性组成:

t:时间

Truepower:电池功率 

Ambitemp:环境温度

Irradiance:辐照 

ModuleTemp:光伏模组温度 

InclAngle:倾斜角 

Current:电流 

Voltage:电压 

Humidity:湿度

推荐,光伏技术和资料合集,主要包含如下内容: pvsyst-太阳能光伏系统设计软件 PV连接器和接线盒标准介绍 IEC对接线盒和连接器的重测要求 微电网接入配电网测试规范 光伏发电站并网运行控制规范 分布式电源并网运行控制规范 油浸式电力变压器技术参数和要求 220kV~750kV电网继电保护装置运行整定规程 国家电网公司继电保护培训教材(上册) 硅片切割工艺及发展趋势 光伏组件用EVA 详细介绍 光伏组件白色线条(静电纹)成因探讨 光伏组件安装程序手册 光伏运行规程 光伏系统中,原电力降压变压器能否做升压用 光伏系统设计 光伏土建质量验评 光伏土建划分 光伏逆变器电路图及原理介绍 光伏建筑一体化常见问题及解决方法 光伏建筑一体化(BIPV)行业研究报告 光伏各城市补贴 光伏高压电气接入 光伏分布式发电收益 光伏发电站监控系统技术要求 光伏发电预测方法简析 光伏发电前期准备工作 光伏发电企业安全生产标准化创建规范 光伏电站行行色色的质量隐患 光伏电站设计规范 光伏电池最大功率点跟踪方法的研究 光伏典型设计 分布式光伏开发流程图 分布式光伏发电接入系统典型设计 分布式光伏并网技术难点分析 分布式光伏&农业大棚备案需要资料(大全) 分布式发电与微电网技术-电子版 分布式电源接入系统典型设计 二次系统现场调试流程及常用测试仪器与软件 二次回路识图及故障查找与处理 电站设计与电气原理图 电力建设工程质量监督检查典型大纲(光伏发电部分) 地面用光伏系统 35kV光伏系统一次系统图 10MW太阳能光伏电站预选方案设计 5MW大型并网光伏电站技术方案 330kV~750kV智能变电站设计规范
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值