自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(124)
  • 资源 (117)
  • 收藏
  • 关注

原创 电气领域相关数据(目标检测,分类图像数据及负荷预测,持续更新)

电气领域相关数据(目标检测,分类图像数据及负荷预测,持续更新)

2023-03-25 14:45:49 11600

原创 电气领域相关数据集(目标检测,分类图像数据及负荷预测),输电线路图像数据

电气相关图像数据集集及负荷数据集如下(包含缺陷检测与分类):1.输电线路巡检鸟巢检测图像数据集(含标签)下载地址:输电线路鸟巢检测图像数据集下载地址2.输电线路相关电力金具检测图像数据集下载地址:输电线路相关电力金具检测图像数据集3.某用户两年电表电压电流数据下载地址:某用户两年电表电压电流数据4.输电线路红外图像与可见光图像下载地址:输电线路红外图像与可见光图像5.电网故障下三相光伏系统研究仿真模型(matlab)下载地址:电网故障下三相光伏仿真模型6.输.

2022-03-25 16:15:41 32377 89

原创 项目一:基于YOLOv7的输电线路销钉缺失检测项目

YOLOv7是目标检测算法YOLO(You Only Look Once)的第七个版本,也是目前较流行的YOLO算法版本之一。

2023-09-02 20:49:57 1081

原创 经典卷积模型回顾32—利用YOLOv3模型进行垃圾检测(matlab)

检测网络是基于特征提取网络的输出,通过多个检测层来预测不同尺度下的目标框、置信度和类别,进而完成物体检测的任务。与传统的基于区域的物体检测方法相比,YOLOv3还具有更好的鲁棒性和更高的检测精度,可以适用于更多的应用场景。它使用了一些新的技术,包括残差块和跨层连接,以提高特征提取的效果,从而提高检测精度。请注意,在使用YOLOv3进行垃圾检测之前,需要安装适当的深度学习工具箱和MATLAB R2018b或更高版本。使用模型来预测新图像中的垃圾物体,并将其与垃圾图像数据集中的标签进行比较。

2023-03-21 10:00:00 1237

原创 经典卷积模型回顾33—利用YOLOv3实现垃圾检测(Tensorflow2.0)

检测网络是基于特征提取网络的输出,通过多个检测层来预测不同尺度下的目标框、置信度和类别,进而完成物体检测的任务。YOLOv3的优点在于速度快、可用于实时检测,并且可以同时检测多个目标,不需要对输入图像进行预处理。与传统的基于区域的物体检测方法相比,YOLOv3还具有更好的鲁棒性和更高的检测精度,可以适用于更多的应用场景。它使用了一些新的技术,包括残差块和跨层连接,以提高特征提取的效果,从而提高检测精度。4. 使用模型进行垃圾检测。使用模型来预测新图像中的垃圾物体,并将其与垃圾图像数据集中的标签进行比较。

2023-03-21 03:30:00 640

原创 经典卷积模型回顾31—利用DarkNet53实现图像分类(Tensorflow2.0)

以下是基于TensorFlow 2.0实现DarkNet53模型进行图像分类的示例代码。使用CIFAR-10数据集进行实验。

2023-03-20 18:44:14 406

原创 经典卷积模型回顾30—利用DarkNet53实现图像分类(matlab)

shortcut connections将前面卷积层的输出添加到后面卷积层的输入中,以避免在深层网络中出现梯度消失的问题。这里我们使用了一个已经封装好的版本,可以在MATLAB中直接使用。准备好训练用的数据集,这里我们使用的是CIFAR-10数据集。在这里,我们使用了一个imagerDatastore对象来方便地加载和预处理训练数据集。在这里,我们将准备好的训练数据集、Darknet53神经网络和训练配置选项传递给trainNetwork函数。下载好数据集后,需要进行一些预处理,将数据转为合适的格式。

2023-03-20 18:19:48 755 1

原创 经典卷积模型回顾29—YOLOV2实现垃圾检测(Tensorflow2.0)

运行以上代码后,将会在当前目录下生成一张result.jpg图片,该图片上会将检测结果标注出来。# 注意:yolov2.weights是Darknet的权重格式,需要进行转换。# 定义输出层(yolo_detection),并连接到模型中。# 将图片转换成TensorFlow的输入格式。# 读取权重文件中的参数,并设置到模型中对应的层。5. 定义检测函数,并加载测试图片进行检测。3. 加载模型权重和配置文件,生成模型。# 读取输入图片,并调整大小。# 读取配置文件和权重文件。# 加载测试图片进行检测。

2023-03-18 20:28:44 403

原创 经典卷积模型回顾28—利用YOLOv2实现垃圾检测(matlab)

其中,'sgdm'表示使用随机梯度下降法,'MiniBatchSize'表示批量大小,'InitialLearnRate'是学习率,'MaxEpochs'是训练轮数,'Shuffle'表示每轮训练前是否随机打乱数据,'Verbose'表示是否输出训练进度信息,'Plots'表示是否在训练过程中绘制训练进度图。其中,'imdsTrain'是我们从数据集中分割出的训练集,'net'是我们加载的YOLOv2模型,'options'是我们设置的训练选项。其中,'imdsTest'是我们从数据集中分割出的测试集。

2023-03-18 20:23:04 839

原创 经典卷积模型回顾27—利用模型量化对DenseNet201进行处理,并实现图像分类(Pytorch)

在图像的数字化处理中,为了减少数据存储量和传输带宽等因素,通常会对图像进行量化处理,即将连续的变化量化成离散的值。因此,在需要还原图像的精度和质量时,需要进行反量化处理,将离散化的值重新转换为连续的数值,恢复图像原有的信息和细节。4. 针对量化后的模型进行微调:由于量化会导致精度损失,需要对量化后的模型进行微调,以尽可能地恢复精度。3. 量化模型激活值:将模型输入和中间层的输出进行量化,同样可以采用线性量化、对数量化等方法。2. 量化模型参数:将模型中的参数进行量化,常见的量化方法有线性量化、对数量化等。

2023-03-17 22:16:30 658

原创 经典卷积模型回顾26—基于知识蒸馏与ResNet152实现轻量模型的食物图像分类(matlab)

是指从一个复杂的神经网络中抽取出一个简化版的网络,使其在保持相对较高的性能的同时,具有更小的模型大小和更低的计算成本。通常情况下,知识蒸馏的目标是将“学生网络”(简化版的网络)的输出与“教师网络”(复杂的网络)的输出相匹配。与其他 ResNet 模型类似,ResNet-152 也采用了残差学习(Residual Learning)的方法,即在前一层的输出与后一层的输入之间添加一个跨层连接,将前一层的信息直接传递给后一层,从而避免了信息在传递过程中的丢失。此外,我们还需要定义一个较小的网络,用于知识蒸馏。

2023-03-17 21:40:16 1433 1

原创 经典卷积模型回顾25—利用蒸馏对DenseNet201进行处理,并实现图像分类(matlab)

使用densenet201模型来定义网络。%我们还可以使用其他机器学习算法(如svm、knn等)也可以对此结果进行训练。%使用densenet201模型的蒸馏版本进行图像分类,并输出预测标签。imgDir = 'F:\测试图片路径'%存放测试图片的路径。%设置mini batch大小。testImgDir = 'F:\测试图片文件夹路径';%从 testImgDir路径读取所有待测试照片。%使用模型蒸馏将原始模型中掩码量进行处理。%测试:存放待测试图片的文件夹路径。disp('模型预测结果:');

2023-03-16 18:30:56 739

原创 经典卷积模型回顾24—利用模型剪枝对DenseNet201进行处理,并实现图像分类(matlab)

可以使用Matlab的神经网络模型剪枝工具box来对densenet201模型进行剪枝处理,它提供了一个强大的框架来实现神经网络剪枝,并且可以对定制的模型进行处理。(5)使用reducelearnablelayers函数对densenet201模型进行剪枝,可以指定保留哪些重要的学习层;%根据实验情况,可以采取剪枝模型,减少参数量,减少模型复杂度,压缩模型大小,提升模型效率。%对剪枝后的模型进行测试,以查看其准确率。%% Step 4:对剪枝后的模型再测试。%将剪枝后的模型部署,以实现实时图像分类。

2023-03-16 18:22:46 676 2

原创 经典卷积模型回顾23—mobilenetV2实现图像分类(tensorflow2.0)

传统的卷积神经网络使用的是标准卷积(Standard Convolution),它使用的是一个较大的卷积核来在输入图像上进行卷积操作。它通过 Depthwise Convolution 将卷积操作分解为多个较小的卷积操作,每个卷积操作可以在不同的通道上进行处理,这样可以很好地提取输入特征图的空间信息。深度可分离卷积是将标准卷积分解成一个深度卷积和一个逐点卷积的组合。深度可分离卷积被广泛应用于移动设备上的卷积神经网络,它可以在保持一定的精度的同时,大幅减小模型的体积和计算复杂度,从而提升了移动端的实时性能。

2023-03-15 15:22:09 1084

原创 经典卷积模型回顾22—SqueezeNet实现图像分类(Tensorflow2.0)

在expand部分,1×1的卷积滤波器被用于恢复维度,同时3×3的卷积滤波器被用于提取特征。它是一种高效的卷积神经网络,被设计成能够在资源有限的设备上运行,并且在计算资源受限的环境中表现良好。与传统卷积神经网络相比,SqueezeNet仅使用了50倍以下的参数数量,但在ImageNet数据集上的性能却能达到相当高的水平。总的来说,SqueezeNet是一种高效的深度神经网络,能够在计算资源有限的设备上运行,并且可以在各种应用中应用,如图像分类、目标检测、语义分割等。

2023-03-15 15:12:36 839

原创 经典卷积模型回顾21—YOLOv1实现猫狗检测(网页版界面HTML)

经典卷积模型回顾21—YOLOv1实现猫狗检测(网页版界面HTML)

2023-03-14 17:45:00 349

原创 经典卷积模型回顾20—YOLOv1实现猫狗检测(matlab,Tensorflow2.0)

经典卷积模型回顾20—YOLOv1实现猫狗检测(matlab,tensorflow2.0)

2023-03-14 15:15:00 1098 1

原创 经典分类模型回顾19-轻量级SqueezeNet模型实现垃圾分类(Tensorflow2.0)

该模型相比其他深度神经网络模型如VGG或AlexNet,具有更小的模型大小和更快的速度,同时保持了不错的准确率。可以使用Keras的自定义层来创建SqueezeNet模型,或者使用现成的SqueezeNet模型。在编译模型之前,需要指定模型的损失函数(如交叉熵)和优化方法(如随机梯度下降)。然后,可以使用训练集来训练模型,并使用验证集来评估模型的性能。在模型训练和评估完成之后,可以使用测试集或新的图像来测试模型的预测能力。在训练完成后,可以使用测试集来评估模型的性能。

2023-03-13 15:45:00 737

原创 经典分类模型回顾18-DenseNet201实现花的图像分类(Tensorflow2.0)

经典分类模型回顾18-DenseNet201实现花的图像分类(Tensorflow2.0)

2023-03-13 12:00:00 1644

原创 AlexNet分类模型的网页化界面(Flask,keras)

AlexNet分类模型的网页化界面(Flask,keras)

2023-03-12 18:00:00 276

原创 VGG16分类模型的网页界面(Flask,keras)

VGG16分类模型的网页界面(Flask,keras)

2023-03-12 14:00:00 328

原创 经典分类模型回顾17-Resnet实现水果分类(Tensorflow2.0)

-Resnet实现水果分类(Tensorflow2.0)

2023-03-11 16:37:14 1361 1

原创 经典分类模型回顾16-AlexNet实现垃圾分类(Tensorflow2.0版)

AlexNet实现垃圾分类(Tensorflow2.0版)

2023-03-11 16:32:45 830

原创 经典卷积模型回顾15—Googlenet实现图像分类(Tensorflow2.0,猫狗分类)

GoogLeNet是Google在2014年提出的一个深度学习模型,也是当时ImageNet图像分类挑战赛(ILSVRC14)的获胜者,比起先前的模型,GoogLeNet在模型深度和模型参数上都有很大的优化,同时也提高了模型的准确率。辅助分类器是对中间层的输出进行分类,这些分类器的误差也参与整个网络的反向传播,从而更加有效地更新网络参数,使得网络更加容易收敛。我们将使用预训练的模型,并在模型的顶部添加一些全连接层和Dropout层。然后,我们将创建一个数据增强器,并将其应用于训练数据。

2023-03-10 21:23:51 948

原创 经典卷积模型回顾14—vgg16实现图像分类(tensorflow)

其结构由16层组成,其中13层是卷积层,3层是全连接层。总之,VGG16是一个非常经典的深度卷积神经网络模型,被广泛应用于各种计算机视觉任务,并且在该领域取得了极大的成功。- 所有卷积层都是3x3大小的卷积核和1个像素的步幅,这种设计可以得到更小的卷积层,并且每层都可以学到更多的特征;- 模型非常深,卷积层13层,全连接层3层,共有138M参数,能够提取出更多的图像特征;- 采用了大量的卷积层,可以逐步提取出更加抽象、高级别的特征,提高了模型的准确率;定义vgg16模型,包括13个卷积层和3个全连接层。

2023-03-10 21:19:16 2816

原创 经典卷积模型回顾13—ResNetXt实现图像分类(matlab)

ResNetXt是ResNet的变种,在ResNet基础上引入了"split-transform-merge"的思想,旨在进一步提升模型的性能和准确率。ResNetXt模型的核心思想是通过对输入进行分组,然后对每个分组进行不同的变换,最后再将变换后的结果合并。这样可以增加模型的多样性,使得网络可以更好地学习不同的特征。ResNetXt的网络结构和ResNet类似,都采用残差连接,但是在每个残差块中,ResNetXt使用了多个分支(即cardinality)的方式,让网络在不同的分支上学习到不同的特征。同

2023-03-09 13:22:40 1391 2

原创 经典卷积模型回顾12—EfficientNet实现图像分类(matlab)

EfficientNet是由Google Brain团队开发的一种高效的卷积神经网络模型,它在ImageNet数据集上取得了目前最好的性能。其特点是结构简单,模型参数量小,准确率高,占用的内存和计算资源较少。EfficientNet使用了一种新颖的方法来平衡模型深度、宽度和分辨率,称为Compound Scaling。它通过对不同的模型参数进行统一的缩放,从而在保证性能的同时,大幅度减小了模型规模。这一技术的使用极大地提高了模型的训练效率和预测速度,在不同的硬件设备上都能够达到出色的表现。Effic

2023-03-09 13:13:03 931

原创 经典卷积模型回顾11—Xception实现图像分类(matlab)

Xception是一种深度卷积神经网络,它采用了分离卷积来实现深度神经网络的高准确性和高效率。Xception的名称来自“extreme inception”,意思是更加极致的Inception网络。在传统的卷积神经网络中,每个卷积层都有若干个滤波器(即卷积核),每个滤波器在各个通道上进行滑动卷积操作。而在Xception网络中,每个卷积层都被拆分成两个子层:深度卷积和逐点卷积。深度卷积是指每个通道上都有一个滤波器,逐点卷积是指使用类似1x1卷积的方式,对各个通道的特征进行组合。采用这种设计,Xce

2023-03-08 23:04:05 787

原创 经典卷积模型回顾10-SeNet实现图像分类(matlab)

SENet(Squeeze-and-Excitation Networks)是一种用于图像分类的深度学习模型,它是在ResNet和Inception中加入SE模块而得到的。SE模块基于通道注意力机制,可以动态地调整网络中每个通道的权重,以此提高模型的性能。SE模块的核心思想是将全局特征信息和局部特征信息结合起来,通过学习通道权重来减少冗余计算。其具体实现是通过一个全局池化层将每个通道的信息聚合成一个标量,然后通过两个全连接层进行通道关注度的建模,最后使用Sigmoid函数对通道的权重进行归一化处理。这样

2023-03-08 23:00:33 799 3

原创 经典卷积模型回顾9-轻量化模型ShuffleNet实现图像分类(matlab)

ShuffleNet是一种深度神经网络模型,由微软亚洲研究院提出,旨在提高移动设备上的图像分类和目标检测任务的效率和准确性。ShuffleNet通过增加shuffle操作,有效地减少了模型参数数量和计算复杂度,同时保持了较高的准确率。ShuffleNet中的shuffle操作包括两个步骤:通道打乱和沙漏形卷积。通道打乱将输入特征图分成几个组,然后将每个组按照随机顺序合并成一个新的特征图。这种方法不仅增加了模型的非线性性,而且减少了特征之间的相互影响。沙漏形卷积则是一种新型的卷积形式,可以在减小特征图尺寸的同

2023-03-07 14:11:26 884

原创 经典卷积模型回顾8—NIN实现图像分类(matlab)

NiN模型是由加州大学伯克利分校的Lin、Chen、Yan等人在2013年提出的一种深度卷积神经网络模型,其特点是在传统的卷积神经网络中加入了多个小的全连接网络,用于对特征进行非线性变换,以提高模型的表达能力和分类精度。NiN模型使用了一些基本的深度学习技巧,如ReLU激活函数、Dropout正则化、全局平均池化等,以及一些创新的模块,如多层感知器(MLP)层、1x1卷积层等。以上就是利用NiN实现图像分类的MATLAB代码,其中涉及到的函数可以参考MATLAB官方文档进行学习。然后,构建NiN模型。

2023-03-07 14:04:05 703 3

原创 经典卷积模型回顾7-轻量化模型MobileNet实现图像分类(matlab)

MobileNet是一种轻量级卷积神经网络,适用于较小的设备和低功耗环境。在MATLAB中,可以使用Deep Learning Toolbox进行MobileNet的图像分类训练。使用预先训练好的MobileNet模型对自定义数据集进行微调训练:```matlab% 导入数据集imds = imageDatastore('path/to/images','IncludeSubfolders',true,'LabelSource','foldernames');% 定义网络模型n

2023-03-06 11:24:48 866 1

原创 经典卷积模型回顾6—轻量化模型SqueezeNet实现图像分类(matlab)

SqueezeNet是一种轻量级的卷积神经网络(CNN),其设计目的是在使用少量的参数和计算资源的情况下,保持较高的分类性能,使用SqueezeNet在MATLAB中进行图像分类训练。步骤1:准备数据集首先,我们需要准备一个图像分类数据集。在本文中,我们将使用CIFAR-10数据集,其包含了10个类别的60000个32x32的RGB图像。可以在MATLAB中使用以下命令下载该数据集:```% 下载CIFAR-10数据集url = 'https://www.cs.toro

2023-03-06 11:22:11 1556 1

原创 经典分类模型回顾5—DenseNet实现图像分类(matlab)

DenseNet,全称为Densely Connected Convolutional Networks,中文名为密集连接卷积网络,是由李沐等人在2017年提出的一种深度神经网络架构。DenseNet旨在解决深度神经网络中的梯度消失问题和参数数量过多的问题,通过构建密集连接的方式,使得网络能够更好地利用之前的特征,从而获得更好的性能。DenseNet的核心思想是:把网络中前面的层与后面的层进行连接,让前面的层的输出成为后面的层的输入。这样,整个卷积网络就变得非常紧凑,同时也避免了梯度消失的问题。D

2023-03-05 09:39:27 1669 1

原创 经典分类模型回顾4-Resnet实现图像分类(matlab)

ResNet(Residual Network)是由Microsoft Research团队提出的一种深度卷积神经网络结构,它在ImageNet图像分类比赛中获得了第一名的成绩。ResNet的主要特点是引入了残差块(Residual Block)的概念,使得网络可以更深,并且训练效果更好。在ResNet中,残差块是由两个卷积层和一个恒等映射(Identity Mapping)组成。恒等映射是指输入和输出相同,即输出是输入加上一个恒定的偏移量。当网络层数较深时,传统的卷积神经网络容易出现梯度消失和梯度

2023-03-05 09:34:09 3167

原创 经典分类模型回顾3-AlexNet实现图像分类(matlab版)

AlexNet是一种深度卷积神经网络,用于识别图像中的物体。它是由Alex Krizhevsky,Ilya Sutskever和Geoffrey Hinton在2012年提出的。它在ImageNet图像识别竞赛中获得了第一名。在MATLAB中,可以使用Deep Learning Toolbox实现AlexNet进行图像分类。以下是一些简单的步骤:1. 准备数据在进行训练前,需要准备图像数据集。可以使用ImageDatastore函数加载数据集。在这里,我们使用了一个名为“flower_datas

2023-03-04 13:20:07 1155

原创 经典分类模型回顾2—GoogleNet实现图像分类(matlab版)

GoogleNet是深度学习领域的一种经典的卷积神经网络,其在ImageNet图像分类任务上的表现十分优秀。下面是使用Matlab实现GoogleNet的图像分类示例。1. 数据准备在开始之前,需要准备一些图像数据用来训练和测试模型,可以从ImageNet等数据集中下载。2. 网络构建使用Matlab的Neural Network Toolbox可以快速构建卷积神经网络。在本示例中,我们可以使用已经预训练好的GoogleNet模型,也可以从头开始构建一个新的模型。使用预训练好的Googl

2023-03-04 13:11:27 1468 1

原创 VGG16实现图像分类(matlab版)

1. 加载VGG16模型VGG16是一个经典的卷积神经网络模型,我们可以使用Matlab内置的函数vl_simplenn来加载并使用该模型。首先要确保已安装了Matlab的Deep Learning Toolbox。```matlab%加载VGG16模型net = load('vgg16.mat');%去掉最后一层全连接层net.layers(end)=[];```2. 加载数据集在完成图像分类任务之前,必须先准备好训练数据。在这个例子中,我们将使用一个公开的数据集CIFAR-1

2023-03-03 17:06:39 3133 1

原创 绝缘子红外图像检测项目(TF2)

绝缘子红外图像检测项目(TF2)

2022-12-29 19:16:19 2411 9

原创 变电站火灾检测项目(tf2)

变电站火灾检测项目(tf2)

2022-12-18 13:45:59 2464

输电线路无人机巡检典型缺陷检测图像数据集(2003幅图像,voc,异物、防鸟刺等8类目标)

内含2003幅输电线路无人机巡检典型缺陷检测图像,由于平台上传文件大小有限吗,此为网盘下载链接,如链接失效请私,备注订单号,各类目标类别(VOC)及数量如下:{'bird_nest(鸟巢)': 478, 'insulator(绝缘子)': 4350, 'FNC(防鸟刺)': 326, 'hammer(防振锤)': 3258, 'hammer_defect(防震锤缺陷)': 326, 'discharge(闪络)': 857, 'insulator_defect(绝缘子缺陷)': 900, 'foreign_body(异物)': 190}

2024-04-09

输电线路航拍图像数据集(5800多张,voc标签,划分训练测试,绝缘子缺陷、航空警示球、鸟巢等8类目标)

内含5800多张输电线路无人机航拍图像数据集,已划分训练测试集,均为voc标签,训练集各类标签类别及数目如下:'JYZ(绝缘子)': 7261, 'FZC(防振锤)': 2673, 'JYZ_bqd(绝缘子,缺陷不确定)': 1471, 'JYZ_qx(绝缘子缺陷)': 1779, 'JGB(间隔棒)': 933, 'NC(鸟巢)': 340, 'HKJSQ(航空警示球)': 444, 'HKJSQ_qx(航空警示球缺陷)': 184

2024-02-25

杆塔缺陷检测航拍图像数据集(2500多张,voc标签,螺母螺栓缺失,树木,锈蚀,鸟巢四类目标)

内含2500多幅杆塔航拍图像,包含塔材螺栓螺母缺失,树木,塔材锈损,鸟巢四类缺陷,并利用labelimg软件对其进行了标注,标签格式为voc,各类标签数目如下:'(螺母螺栓缺失)': 2455, '(塔材锈蚀)': 1359, '(鸟巢)': 172, '(杆塔下树木)': 401

2024-01-27

配网绝缘导线烧伤检测图像数据集(1600多幅图像,voc标签)

内含1600多幅配网绝缘导线烧伤图像,有部分照片为地面拍摄,大部分为航拍图像,已利用labelimg对其进行了标注,标签格式为voc(xml)。

2023-12-21

输电线路典型目标图像识别(1200张图像,voc标签,绝缘子、避雷器、防震锤、间隔棒四类目标,注意:不含缺陷)

内含1200多张输电线路典型目标图像,可用于进行YOLO等目标检测模型的训练,包含绝缘子、避雷器、防震锤、间隔棒四类目标,标签格式为VOC(xml),注意,图像不包含缺陷,均为正常状态。

2023-12-20

三类线路常见缺陷检测图像数据集(1900多张图像,VOC标签,导线散股,塔材锈蚀,绝缘子自爆)

内含三类输电线路常见缺陷,分别为导线散股、塔材锈蚀、绝缘子自爆三类,共计1900多幅图像,已利用labelimg对其进行了标注,标签格式为voc。各类缺陷的数目如下:'cable_defectueux(导线散股)': 1303, 'insulator_defect(绝缘子自爆)': 133, 'rust(塔材锈蚀)': 879。“塔材锈蚀”部分有翻转扩充。

2023-11-28

变电站缺陷隐患检测图像数据集(8000多张,VOC标签,含渗漏油,鸟巢,表盘破损,呼吸器变色等16种缺陷)

内含8000多张图像,利用labelimg对其进行了标注,各类标签数目:789个(表计读数有错);523个 (表计外壳破损);883个   (异物_鸟巢);383个 (操纵箱箱门闭合异常) ;362个 (开关柜已闭合;654个  (盖板破损) ;729个 (异物_挂空悬浮物);1174个(呼吸器_硅胶变色);869个 (表计表盘模糊);410个  (绝缘子破裂);723个 (表计表盘破损);833个(渗漏油_地面油污);567个   (未穿戴安全帽);815个    (未穿工装);106个(呼吸器_硅胶体破损);607个(吸烟) 上传大小有限,此为网盘下载链接

2023-10-31

开关设备红外过热图像数据集(5500多张图像,VOC标签,接头、互感器等8类目标)

内含5500多幅开关设备红外过热图像,利用labelimg软件对其中的目标进行标注,标签格式为VOC(xml),各类标签数目如下:核心: 699 连接部分 6384主体: 380 负荷开关: 548 避雷器: 267 电流互感器: 790 塑料外壳式断路器: 1600 电压互感器: 661。 注意:是利用红外过热图像进行部件检测,不是过热点或者过热区域检测。

2023-10-30

输电杆塔三维实景建模图像之杆塔、绝缘子检测(1900多张图像,voc标签)

{'insulator': 1476, 'tower': 1315},内含1900多张输电杆塔三维实景建模图像,并利用labelimg软件对其中的绝缘子及杆塔进行检测,标签格式为voc(xml)。

2023-10-26

输电线路悬垂线夹检测无人机航拍图像数据集(1600多张图像,VOC标签)

内含1600多张输电线路无人机航拍图像,可用于对悬垂线夹进行检测,已利用labelimg软件对其进行标注,标签格式为voc(xml)。

2023-10-14

配网缺陷检测无人机航拍图像数据集(不规范绑扎和销钉缺失,3400多张图像,VOC标签)

内含3400多张配网缺陷检测无人机航拍图像,缺陷类别为绑扎不规范与销钉缺失,已利用labelimg软件对其进行标注,标签格式为voc(xml),由于平台上传大小有限,此为网盘下载链接。

2023-10-14

变压器红外测温过热点检测图像数据(VOC标签,600多张测温图像,其中有200多张过热图像)

内含600多幅变压器及其套管红外测温图像,其中有200多幅图像包含过热点,利用labelimg软件对其进行了标注,标签格式为VOC

2023-10-14

电力施工作业安全行为检测图像数据集(VOC标签,2300多幅图像,含高空抛物,未正确佩戴安全带等违章行为)

内含2300多张电力施工作业安全行为违章图像(摆拍),含高空抛物,未佩戴安全带、未正确佩戴安全带,高处作业有人监护,高空作业无人监护等6类常见违章,利用labelimg对其进行标注,标签格式为VOC(xml)

2023-10-14

设备检测可见光图像数据集(设备部件检测,1035张,VOC标签,白天黑夜两类场景))

由于平台上传大小有限,此为设备检测可见光图像数据集网盘下载链接。内含1035张四类设备的可见光图像,五类目标,并利用labelimg软件进行标注,标签格式为VOC。各类标签数量为:隔离开关(570),避雷器(586),电压互感器(794),电流互感器(1018),断路器(662)注意不含缺陷,仅可用于部件检测。

2023-10-12

输电线路语义分割图像数据集(1200多张图像,含分割标签,json标签)

数据集1200多张输电线路无人机巡检图像,可用于语义分割,含五类主体,利用labelme==4.5.6标注,由于平台上传大小有限,此为网盘下载链接。

2023-08-31

输电线路红外过热检测图像数据集(2000多张图像,VOC标签,其中过热缺陷包含图像融合形成的缺陷和真实缺陷)

内含2300多张输电线路红外过热检测图像,其中过热缺陷包含图像融合形成的缺陷和真实缺陷,利用labelimg对其进行标注,标签格式为voc(xml)。

2023-08-30

输电线路绝缘子缺陷检测图像数据集(1688张图像,VOC标签,原图488张,含四类目标)

内含1688张绝缘子缺陷图像,由于上传大小有限,此为下载网盘链接。数据集训练介绍地址:https://blog.csdn.net/ncusz/article/details/128221336。原图488张,有扩充,标签格式为VOC标签。

2023-08-30

输电杆塔绝缘子红外测温图像(790多幅,VOC标签)

输电杆塔绝缘子红外测温图像(790多幅,VOC标签),数据集内含790多幅绝缘子红外测温图像,并利用labelimg软件对其进行了标注,标签类别为insulator(绝缘子),标签类型为voc(xml)。

2023-08-28

配电变压器检测图像数据集(voc标签,3000幅图像)

配电变压器检测图像数据集(voc标签,3000幅图像) ,内含2994幅配网航拍图像,主要对其中的配电变压器进行检测,标签类别为配电变压器,标签格式为VOC(xml)。

2023-08-28

输电线路螺栓销钉缺失检测图像数据集(1209张,大目标,VOC)

数据集内含1209张销钉缺失图像,并利用labelimg对其进行了标注,标签格式为VOC(xml),标签类别为正常与销钉缺失两类,利用其对yolov7目标检测模型进行训练,mAP值达93.7%。

2023-08-27

变电站红外图像数据集(电压电流互感器,VOC标签,889张)

内含889张变电站红外图像,并对其中的电流互感器和电压互感器进行了标注,电流互感器(TC) 516个标签,电压互感器(TP),650个标签。

2023-06-02

塔吊下方站人检测图像数据集(1000多张图像,VOC标签)

内含1000多张塔吊上的视频监控图像,可用于对站在塔吊下方的人物进行检测,并已经利用labelimg对其进行了标注,标签格式为VOC标签。

2023-04-29

负荷预测数据集(2018.1-2020.12,间隔15min,10w多条)

数据为10w多条负荷数据,时间为2018年1月~2020年12月,采样间隔为15min,含温度湿度风速露点云层覆盖等特征(单位为MW)

2023-04-22

负荷预测数据集(12w多条数据,时间间隔15min,含天气状况,最高温度,最低温度,白天风力风向,夜晚风力,风向等天气数据)

数据为12w多条负荷预测数据,时间间隔为2018年~2021年,包含气状况,最高温度,最低温度,白天风力风向,夜晚风力,风向等天气特征,且按天为单位划分处每天四种类型的用电负荷(大工业、商业、普通工业、非普通工业)

2023-04-22

光伏电站发电量预测数据集(17500条数据)

训练数据集:光伏发电设备采集信息9000条; 测试数据集:光伏发电设备采集信息8500条。 使用说明:文件中包含以下内容: 表格字段及含义如下: ID:当前记录条数; 板温:光伏电池板背测温度; 现场温度:光伏电站现场温度; 转换效率:为计算得到的平均转换效率; 转换效率A:数据采集点A处的光伏板转换效率; 转换效率B:数据采集点B处的光伏板转换效率; 转换效率C:数据采集点C处的光伏板转换效率; 转换效率D:数据采集点D处的光伏板转换效率; 电压A:为数据采集点A处汇流箱电压值; 电压B:为数据采集点B处汇流箱电压值; 电压C:为数据采集点C处汇流箱电压值; 电压D:为数据采集点D处汇流箱电压值;等等

2023-04-03

德国风力发电机发电预测数据集(2019-2021.12月,13w多条数据,时间间隔10min,含轴承温度等76维特征)

德国风力发电机发电数据集(2019-2021.12月,13w多条数据,时间间隔10min,含轴承温度等76维特征),含各类特征的单位信息。

2023-04-03

英国变电站13台变压器冷却油中溶解气体分析数据集(2010-2015)

数据内容为英国变电站13台变压器冷却油中溶解气体分析数据集(2010-2015),数据以百万分之几 (ppm) 为单位记录,变压器的每一相都记录了 8 种微量气体的浓度。

2023-04-03

接触网绝缘子缺陷检测图像数据集(400多张图像,VOC标签,夜间场景)

数据内容为400多张接触网绝缘子图像,包含正常与缺陷两种,已经对其进行了标注,标签格式为VOC

2023-04-03

输电线路巡检红外图像与可见光图像融合数据集(含分割标签,1700多张图像,红外图像为CSV格式需转换)一一对应,可用于图像配准

数据可用于输电线路巡检红外图像与可见光图像融合数据集(含分割标签,1700多张图像,红外图像为CSV格式需转换为jpg格式)一一对应,可用于图像配准

2023-04-03

变压器油温预测数据集(2016~2018两年,时间间隔1h,六项特征)

数据中每个数据点每1h分钟记录一次,数据来自我国某省两个地区(m1,m2),每个地区68000多条数据,共计12w多条数据,包括数据点的记录日期、预测值“油温”以及6个不同类型的外部负载值。

2023-04-03

负荷预测数据集(38000多条数据,96节点,时间间隔15min,含温度、湿度、风速、降雨等特征)

数据内容为38000多条符合数据,96节点,时间间隔15min,含温度、湿度、风速、降雨等特征

2023-04-03

风力发电机叶片损伤检测图像数据集(3584张图像,VOC标签,五类缺陷)

数据内容为3584张风力发电机缺陷图像数据,图像数据有增强(有对比度变化扩充,以模拟不同环境下的航拍图像),标签格式为VOC,标签名称及数目:OIL LEAKAGE(漏油):753个;dirt(污秽物):846个 ;Paint(掉漆):2455个;LE-Erosion(侵蚀):617个;PU-tape(胶带):700个

2023-04-03

输电线路绝缘子检测红外图像数据集(VOC标签,900多张图像)

数据集含900多张输电线路红外绝缘子图像,并对其中的绝缘子进行了标注,标签格式为VOC

2023-04-01

输电线路异物检测图像数据集(230张图像,VOC标签)

数据集含230张输电线路异物图像原图,并对其中的异物进行了标注,标签格式为VOC格式

2023-04-01

变电站控制柜面板状态检测图像数据集(1800多张图像,VOC标签)

数据集含1800多张变电站控制柜,并进行了标注,标签格式为VOC;标签类别及数目如下:switch-left:1191个;switch-center:1566个;red:396个;red-green:394个;platen-on:3378个;platen-off:4696个;red-red-off:648个;transformer:558个;switch-right:461个;green-green-off:482个;platen-on-half:187个;switch-center-half:403个;transformer-on-half:187个;transformer-on:457个;red-red:143个;green-green-red:96个

2023-04-01

光伏发电板红外过热检测图像数据集(400张原图,VOC标签)

数据内含404张光伏发电板红外过热图像,并进行了标注,标签格式为VOC标签,404张图像均为原图

2023-04-01

光伏发电板航拍图像鸟粪检测数据集(400张原图,VOC标签)

内含400张光伏发电板可将光图像,可用于对其进行鸟粪检测,标签格式为VOC格式标签

2023-04-01

数字电表读数检测图像数据集(3300多张图像,VOC标签,标注电表编号与读数)

该数据内容为3300多张数字电表图像,标注了电表的编号及读数区,有少量扩充,原图2000张

2023-04-01

架空输电线路鸟巢检测图像数据集(200张图像,VOC标签)

数据中含200张架空输电线路鸟巢图像,可用于鸟巢检测,已经对其进行了标注,标签格式为VOC标签

2023-04-01

电力系统短期电力负荷预测数据集(2015~2020,4.8w多条数据,时间间隔1h,含温度湿度等特征及区域特征的详细说明文件)

该数据可用于电力系统短期电力负荷预测,含4.8w多条电力系统负荷数据,时间间隔为1h,时间跨度为2015年1月~2020年6月,含温度、湿度、风速等13种特征,并备注是否为工作日

2023-04-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除