感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。
【数据背景】在广东电网作业人员的日常工作中,经常需要爬到供电塔架高处进行检查。为了保障作业人员的安全,广东电网规定:攀爬离地人员必须佩戴安全带,并在现场配有监护人员,以防止出现意外情况。感兴趣的同学可以CSDN查看个人简介,获取相关数据集。
在该场景提供的训练数据集中,包含的具体标签及解释见下:
badge:监护袖章(只识别红色袖章)
offground:离地状态的人
ground:着地状态的人
safebelt:佩戴安全带
通过上述信息,要求目标检测算法能够在电网现场作业过程中,模型最终以“人”为单位自动检测出以下内容:
3.1 识别出所有在场人员,并具体区分出监护人员(佩戴红色袖章);
3.2 识别出现场佩戴安全带的人员;
3.3 识别出处于离地状态的人员;
【算法结果】需要在测评集上进行预测,提交评估结果。要求以单个json文件提交。具体文件要求如下:
[{
"image_id": int,
"category_id": int,
"bbox": [xmin,ymin,xmax,ymax],
"score": float
}]
image_id为测试数据中image在csv当中的序列号,从0开始,为0、1、2、3……的int类型数字,其最大值小于599,超出则会报错;因为存在同一个框多个识别结果的情况,提交结果的条数不设限,可以超过600条。
category_id为需要检测的结果类别,同样为int,category_id每次只提交1个类别,若一个框满足多个识别结果,需要分block来写。需要提交的测试结果为以下几类,且图像的category_id应与下方的注释保持相同:
guarder(监护人员)
safebeltperson (佩戴安全带人员)
offgroundperson(离地状态人员)
注意:所有出现的人物(包括电网作业人员、监护人员、旁观的电网工作人员、路人等)均需进行相关标签的识别。
例:有一位身着工作服的电网工作人员出现在现场,非当场作业人员也非监护人员,仍需识别其是否佩戴安全带。如果有一位路人出现,没有匹配的标签描述,则不提交结果。如果有路人处于离地状态,可以将其识别成离地状态人员。
【数据文件】数据集的文件列表共包含6个文件,3_images.tar.gz、3train_rname.csv、3_test_imagesa.tar.gz、3_testa_user.csv、3_testa_user.csv、3_testB.zip、3_testb_imageid.csv。
3_images.tar.gz为训练图像集,大小约10.5GB;
3train_rname.csv为训练集标注信息;
3_test_imagesa.tar.gz为A榜测试集,大小约2.4GB;
3_testa_user.csv为A榜测试集信息;
3_testB.zip为B榜加密数据集,大小约8.2GB;
3_testb_imageid.csv为B榜加密数据信息。