## 题目描述
将整数 $n$ 分成 $k$ 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如:$n=7$,$k=3$,下面三种分法被认为是相同的。
$1,1,5$;
$1,5,1$;
$5,1,1$.
问有多少种不同的分法。
## 输入格式
$n,k$ ($6<n \le 200$,$2 \le k \le 6$)
## 输出格式
$1$ 个整数,即不同的分法。
## 样例 #1
### 样例输入 #1
```
7 3
```
### 样例输出 #1
```
4
```
## 提示
四种分法为:
$1,1,5$;
$1,2,4$;
$1,3,3$;
$2,2,3$.
#include<bits/stdc++.h>
using namespace std;
int a,b,c;
void dfs(int x,int y,int z)
{
if(z==b)
{
if(y==a) c++;
return;
}
for(int i=x;y+i*(b-z)<=a;i++)
dfs(i,y+i,z+1);
}
int main()
{
scanf("%d%d",&a,&b);
dfs(1,0,0);
printf("%d",c);
return 0;
}