为micropython添加模块(1)-全局模块

本文介绍了如何在Micropython中根据官方指南创建一个LED模块,包括编写底层驱动函数,封装为Python对象,并在Makefile中添加。作者发现文档与实际代码存在差异,但通过调试和在mpconfigport.h中注册模块,成功实现了预期功能。
摘要由CSDN通过智能技术生成

根据官方描述步骤创建一个led模块
为新模块创建一个源文件
参考官方样例的命名规范, 这里在lpc5500移植项目的目录下创建mod_led.c

PS: 原始的命名范例中没有使用下划线"_"将前缀"mod"单独分隔出来, 但我通过阅读代码发现, 增加下划线的命名方式更符合micropython的命名规范. 实际上, 在micropython的源代码中, 都是使用下划线作为命名单词的分隔符的. 我有点不明白为什么文件的命令没有使用分隔符. 按照我的开发习惯, 在规模比较大的软件项目中, 使用分隔符的命名方式可读性更好, 所以在我自己的练习代码中, 将会使用下划线作为名字之间的分隔符.

在新模块中首先编写最基本的led模块对应底层驱动的三个函数:

hw_led_init()
hw_led_on()
hw_led_off()
目前先做一个最简单的样例, 实现从python到c语言函数的调用. 目前的样例中仅仅传递函数指针, 不传入任何参数, 在后续的文章中将专门探讨传递参数的问题.

逐层封装
毕竟使用了armgcc编译器, 底层的代码还是以C语言方式运行的, 从python到底层的C就是层层调用. 反过来在开发过程中, 准备好底层的C代码之后, 想要在python层面上被识别, 就需要层层封装并注册.

从官方的样例代码中可以看到, 大体上分为三个层次的封装, 对应了三个封装的宏操作:

MP_DEFINE_CONST_FUN_OBJ_0. 将函数封装成对象. 在python中, 一切皆是对象.
MP_DEFINE_CONST_DICT. 将所有的函数对象封装成一个操作清单.
MP_REGISTER_MODULE. 将操作清单和对象绑定在一起, 注册到python系统中.
到目前为止, 完整的mod_led.c源文件内容如下:
 

/* mod_led.c */
#include "py/runtime.h"

#include "fsl_com
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值