实验目的:
(1)理解并熟练使用序列解包。
(2)理解递归函数工作原理。
(3)能够编写递归函数代码解决实际问题。
(4)理解Python字典的用法。
(5)养成检查和测试循环结构边界条件的习惯。
(6)养成时刻注意各级代码缩进级别的习惯。
实验内容:
假设一段楼梯共15个台阶,小明一步最多能上3个台阶。编写程序计算小明上这段楼梯一共有多少种方法。要求给出递推法和递归法两种代码。
从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),同理,第14个、13个、12个台阶都可以这样推算,从而得到递归公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法(一步迈3个台阶上去、一步2个台阶+一步1个台阶、一步1个台阶+一步2个台阶、一步迈1个台阶分三步上去)。
实验环境:
Windows 10/11 + Jupyter Notebook \ PyCharm \ Spyder \ VScode + Python 3.9
实验代码:
1.递推法
1.1递推法法一
def climbStairs1(n):
a = 1
b = 2
c = 4
for i in range(n-3):
c, b, a = a+b+c, c, b
return c
print(climbStairs1(15))
1.2递推法法二
def climbStairs1(n):
if n <= 2:
return n
dp = [0] * (n + 1)
dp[1], dp[2] = 1, 2
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
return dp[n]
print(climbStairs1(15))
2.递归法
2.1递归法法一
def climbStairs2(n):
first3 = {1:1, 2:2, 3:4}
if n in first3.keys():
return first3[n]
else:
return climbStairs2(n-1) + \
climbStairs2(n-2) + \
climbStairs2(n-3)
print(climbStairs2(15))
2.2递归法法二
def climbStairs2(n, memo={}):
if n in memo:
return memo[n]
if n <= 2:
return 1
if n == 3:
return 2
memo[n] = climbStairs2(n - 1, memo) + climbStairs2(n - 2, memo) + climbStairs2(n - 3, memo)
return memo[n]
print(climbStairs2(15))