计算小明爬楼梯的爬法数量

实验目的:

(1)理解并熟练使用序列解包。

(2)理解递归函数工作原理。

(3)能够编写递归函数代码解决实际问题。

(4)理解Python字典的用法。

(5)养成检查和测试循环结构边界条件的习惯。

(6)养成时刻注意各级代码缩进级别的习惯。

实验内容:

假设一段楼梯共15个台阶,小明一步最多能上3个台阶。编写程序计算小明上这段楼梯一共有多少种方法。要求给出递推法和递归法两种代码。

从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),同理,第14个、13个、12个台阶都可以这样推算,从而得到递归公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法(一步迈3个台阶上去、一步2个台阶+一步1个台阶、一步1个台阶+一步2个台阶、一步迈1个台阶分三步上去)。

实验环境:

Windows 10/11 + Jupyter Notebook \ PyCharm \ Spyder \ VScode + Python 3.9

实验代码:

1.递推法
1.1递推法法一
def climbStairs1(n):
    a = 1
    b = 2
    c = 4
    for i in range(n-3):
        c, b, a = a+b+c, c, b
    return c
print(climbStairs1(15))

1.2递推法法二
def climbStairs1(n):
    if n <= 2:
        return n
    dp = [0] * (n + 1)
    dp[1], dp[2] = 1, 2
    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
    return dp[n]

print(climbStairs1(15))

2.递归法
2.1递归法法一
def climbStairs2(n):
    first3 = {1:1, 2:2, 3:4}
    if n in first3.keys():
        return first3[n]
    else:
        return climbStairs2(n-1) + \
               climbStairs2(n-2) + \
               climbStairs2(n-3)
print(climbStairs2(15))

2.2递归法法二
def climbStairs2(n, memo={}):
    if n in memo:
        return memo[n]
    if n <= 2:
        return 1
    if n == 3:
        return 2
    memo[n] = climbStairs2(n - 1, memo) + climbStairs2(n - 2, memo) + climbStairs2(n - 3, memo)
    return memo[n]

print(climbStairs2(15))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值