目录
1.树的概念
在学习了解堆之前,我们需要来了解树,堆是树中的一种特殊情况。
可能我们听到树这个名字时,脑海中就会不由自主的浮现一颗树的形状,树作为数据结构的一环,它的,模型就像是一颗倒着的树一样的结构,每个节点存放着我们需要的数据,示例图如下:
树的相关概念:
结点的度:
如图所示,节点的度指的就是该节点所连接的其他节点个数,图中A节点的度为6,B节点的度为3
叶结点或终端结点:
叶结点或终端结点又称作叶子,就像一颗树上的叶子一样,后续没有枝干延升了,树中的叶子节点指的就是那些度为0的节点。
非终端结点或分支结点:
指的就是那些度不为0的节点
双亲结点或父结点:
如图,A为父亲的话,那么B,C,D,E,F,G都是它的孩子
孩子结点或子结点:
指的就是B,C,D,E,F,G
兄弟结点:
树的度:
以树中节点度中的最大一个为树的度,如图树中A节点的度最大为6,那么树的度就是为6
结点的层次:
从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:
树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:
双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:
从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:
以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:
由m(m>0)棵互不相交的树的集合称为森林
二叉树的概念
二叉树是树中特殊的一种,它的每一个父亲节点的孩子都不会超过两个。
- 二叉树不存在度大于2的结点
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
以下又是二叉树的各种情况:
- 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
- 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
堆的概念
堆就属于满二叉树或者完全二叉树的一种,堆的底层实现可以通过顺序存储或者链式存储,本次我们实现的是顺序存储。那么一个堆在底层的顺序存储又是什么样子的呢,看下图。
通过上图我们又可以了解如何使用每一个父亲节点去计算孩子节点:
- 左child = parent * 2 + 1
- 右child = parent * 2 + 2
通过孩子计算父亲节点:
- parent = (child - 1) /2
大堆,小堆概念
- 大堆:所有的父亲节点的数据都>=孩子节点
- 小堆:所有的父亲节点的数据都<=孩子节点
堆的实现
堆的底层逻辑:动态数组
#include <stdio.h>
#include <assert.h>
#include <stdbool.h>
#include <stdlib.h>
// 类型定义
typedef int HPDataTpye;
typedef struct Heap
{
// 动态数组
HPDataTpye* a;
// 元素个数
int size;
// 空间容量
int capacity;
}Heap;
其实操作堆的底层就是对动态数组的操作,我们只需按照堆的方式进行设计即可。
以下是我们会实现的接口功能:
// 函数声明
// 堆的初始化
void HeapInit(Heap* php);
// 堆的销毁
void HeapDestory(Heap* php);
// 堆的插入
void HeapPush(Heap* php, HPDataTpye x);
// 堆的删除
void HeapPop(Heap* php);
// 堆的判空
bool HeapEmpty(Heap* php);
// 取堆的顶数据
HPDataTpye HeapTop(Heap* php);
初始化和销毁
// 堆的初始化
void HeapInit(Heap* php)
{
// 判空
assert(php);
// 初始化
php->a = NULL;
php->size = php->capacity = 0;
}
// 堆的销毁
void HeapDestory(Heap* php)
{
// 判空
assert(php);
// 释放空间
free(php->a);
php->a = NULL;
php->size = php->capacity = 0;
}
堆的插入
这边我们先实现一个大堆的案例:
首先我们在插入堆的情况可能有以下三种情况:
如果插入的数据是图一的情况,我们直接不用管理了,插入之后还是一个大堆,但是如果是图二或者图三的情况,我们就需要对堆进行一个调整,将它调整为大堆的情况。
首先我们需要计算出最后插入数据的父亲节点,让后进行比较,如果刚插入的孩子节点大我们就进行交换,简单点说就是谁大谁当爹,然后通过这样不断的调整,直到插入的孩子到顶,或者中途有父亲节点比它大才结束。
以下是图形过程:
代码实现:
// 向上调整
void AdjustUp(HPDataTpye* a, int child)
{
// 算父亲节点
int parent = (child - 1) / 2;
// 循环向上排序
while (child > 0)
{
if (a[child] > a[parent])
{
// 交换
Swap(&a[child], &a[parent]);
// 把父亲赋值给孩子
child = parent;
parent = (child - 1) / 2;
}
else {
break;
}
}
}
// 堆的插入
void HeapPush(Heap* php, HPDataTpye x)
{
// 判空
assert(php);
// 判断空间是否满
if (php->size == php->capacity)
{
// 看原来的空间容量是否为0,为0分配4个空间,不为0空间*2
int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
// 分配动态空间
HPDataTpye* tmp = (HPDataTpye*)realloc(php->a, newcapacity * sizeof(HPDataTpye));
if (NULL == tmp)
{
perror("malloc fail");
return;
}
php->a = tmp;
php->capacity = newcapacity;
}
// 插入
php->a[php->size - 1] = x;
php->size++;
// 向上调整
AdjustUp(php->a, php->size-1);
}
测试一下:
void HeapText01()
{
Heap h;
// 初始化
HeapInit(&h);
int arr[] = { 4,2,8,1,5,6,9,7};
for (int i = 0; i < sizeof(arr) / sizeof(int); i++)
{
HeapPush(&h, arr[i]);
}
// 销毁
HeapDestory(&h);
}
int main()
{
HeapText01();
return 0;
}
那么实现小堆模型呢,其实很简单,我们只需要将判定大小的条件改一下即可
// 向上调整
void AdjustUp(HPDataTpye* a, int child)
{
// 算父亲节点
int parent = (child - 1) / 2;
// 循环向上排序
while (child > 0)
{
if (a[child] < a[parent])
{
// 交换
Swap(&a[child], &a[parent]);
// 把父亲赋值给孩子
child = parent;
parent = (child - 1) / 2;
}
else {
break;
}
}
}
堆的删除
// 向下调整
void AdjustDown(HPDataTpye* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if (child + 1 < n && a[child] < a[child + 1])
{
child++;
}
if (a[child] > a[parent])
{
// 交换
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else {
break;
}
}
}
// 堆的删除
void HeapPop(Heap* php)
{
// 判空
assert(php);
assert(php->size > 0);
// 交换
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
// 向下调整
AdjustDown(php->a, php->size, 0);
}
堆的判空和取堆的顶数据
// 堆的判空
bool HeapEmpty(Heap* php)
{
// 判空
assert(php);
return php->size == 0;
}
// 取堆的顶数据
HPDataTpye HeapTop(Heap* php)
{
// 判空
assert(php);
return php->a[0];
}
时间复杂度计算
以下图片是向上调整和向下调整的时间复杂度计算:
整体代码及测试:
#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdbool.h>
#include <stdlib.h>
// 类型定义
typedef int HPDataTpye;
typedef struct Heap
{
// 动态数组
HPDataTpye* a;
// 元素个数
int size;
// 空间容量
int capacity;
}Heap;
// 函数声明
// 堆的初始化
void HeapInit(Heap* php);
// 堆的销毁
void HeapDestory(Heap* php);
// 堆的插入
void HeapPush(Heap* php, HPDataTpye x);
// 堆的删除
void HeapPop(Heap* php);
// 堆的判空
bool HeapEmpty(Heap* php);
// 取堆的顶数据
HPDataTpye HeapTop(Heap* php);
#include "Heap.h"
// 堆的初始化
void HeapInit(Heap* php)
{
// 判空
assert(php);
// 初始化
php->a = NULL;
php->size = php->capacity = 0;
}
// 堆的销毁
void HeapDestory(Heap* php)
{
// 判空
assert(php);
// 释放空间
free(php->a);
php->a = NULL;
php->size = php->capacity = 0;
}
// 交换
void Swap(HPDataTpye* p1, HPDataTpye* p2)
{
HPDataTpye tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
// 向上调整
void AdjustUp(HPDataTpye* a, int child)
{
// 算父亲节点
int parent = (child - 1) / 2;
// 循环向上排序
while (child > 0)
{
if (a[child] > a[parent])
{
// 交换
Swap(&a[child], &a[parent]);
// 把父亲赋值给孩子
child = parent;
parent = (child - 1) / 2;
}
else {
break;
}
}
}
// 堆的插入
void HeapPush(Heap* php, HPDataTpye x)
{
// 判空
assert(php);
// 判断空间是否满
if (php->size == php->capacity)
{
// 看原来的空间容量是否为0,为0分配4个空间,不为0空间*2
int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
// 分配动态空间
HPDataTpye* tmp = (HPDataTpye*)realloc(php->a, newcapacity * sizeof(HPDataTpye));
if (NULL == tmp)
{
perror("malloc fail");
return;
}
php->a = tmp;
php->capacity = newcapacity;
}
// 插入
php->a[php->size] = x;
php->size++;
// 向上调整
AdjustUp(php->a, php->size - 1);
}
// 向下调整
void AdjustDown(HPDataTpye* a, int n, int parent)
{
int child = parent * 2 + 1;
while (child < n)
{
if ((child + 1) < n && a[child + 1] > a[child])
{
++child;
}
if (a[child] > a[parent])
{
// 交换
Swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else {
break;
}
}
}
// 堆的删除
void HeapPop(Heap* php)
{
// 判空
assert(php);
assert(php->size > 0);
// 交换
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
// 向下调整
AdjustDown(php->a, php->size, 0);
}
// 堆的判空
bool HeapEmpty(Heap* php)
{
// 判空
assert(php);
return php->size == 0;
}
// 取堆的顶数据
HPDataTpye HeapTop(Heap* php)
{
// 判空
assert(php);
assert(php->size > 0);
return php->a[0];
}
#include "Heap.h"
void HeapText()
{
Heap h1;
// 初始化
HeapInit(&h1);
int arr[] = { 4,2,8,1,5,6,9,7};
for (int i = 0; i < sizeof(arr) / sizeof(int); i++)
{
HeapPush(&h1, arr[i]);
}
int i = 0;
while (!HeapEmpty(&h1))
{
printf("%d ", HeapTop(&h1));
//arr[i++] = HeapTop(&h1);
HeapPop(&h1);
}
printf("\n");
//计算前十最富有的人
/*int k = 0;
scanf_s("%d", &k);
while (k--)
{
printf("%d ", HeapTop(&h1));
HeapPop(&h1);
}*/
// 销毁
HeapDestory(&h1);
}
int main()
{
HeapText();
return 0;
}