数据结构------堆(二、堆的实现)

一、堆的定义

   我们知道堆是一个树形结构,其实堆的底层是一棵完全二叉树。而完全二叉树是一层一层按照进入的顺序排成的。按照这个特性,我们可以用数组来按照完全二叉树实现堆。


    上面的图片就是一个完全二叉树,也是一个最大堆。而最大堆有一个性质:每一个节点的值都小于它父节点的值。我们也可以从上面的图片中看出来。但是需要注意的是,每一个节点的值的大小与它所处的深度没有必然的联系。因为我们可以看到第三层的六号和七号节点都小于处于最后一层的八号和十号节点。

    我们如果将这个最大堆存入数组中,就需要按照索引顺序存入:

0 1 2 3 4 5 6 7 8 9 10
  60 40 29 31 27 16 14 25 15 26

    我们可以很容易的根据任意一个节点的索引(除去根节点)找到它的父节点的索引,如果当前节点的索引为index,那么:

    当前节点的父节点 = index / 2(这里

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值