桐桐的全排列(DFS)

题目描述

今天,桐桐的老师布置了一道数学作业,要求列出所有从数字1到数字n的连续自然数的排列,要求所产生的任一数字序列中不允许出现重复的数字。因为排列数很多,桐桐害怕写漏了,所以她决定用计算机编程来解决。

输入

只有一个整数n(1≤n≤9)。

输出

按字典序输出由1~n组成的所有不重复的数字序列,每行一个序列,每个数字之间有一个空格。

样例输入 Copy
3
样例输出 Copy
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

DFS代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
int a[10],book[10]={0}; //辅助判断数组
int n;
void DFS(int step) //构建dfs函数
{
	if(step==n)   //到达目的地(终止条件)
	{
		for(int i=0;i<n;i++) 
		{
			cout<<a[i]<<" ";  //输出
		}
		cout<<"\n";
		return;
	}
	for(int i=1;i<=n;i++)
	{
		if(book[i]==0)  //状态位为0
		{
			a[step]=i;  //填充数组
			book[i]=1;  //更新状态位
			DFS(step+1);//进行下一层检索
			book[i]=0;  //回复状态位(返回主干)
		}
	}
}
int main()
{
	ios::sync_with_stdio;
	cin.tie(0);
	cout.tie(0); 
	scanf("%d",&n);
	DFS(0);     //运行dfs函数
	return 0;
}

直接使用函数:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
int a[10];
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		a[i]=i;
	}
	do
	{
		for(int i=1;i<=n;i++)
		{
			cout<<a[i]<<" ";
		}
		cout<<"\n";
	}
	while(next_permutation(a+1,a+n+1));
	return 0;
}

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charles Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值