2025中青杯数学建模ABC题思路教程,详细内容见文末名片
情绪是个体内心的一种主观体验,它不仅反映了人类对内外环境变化的感知,还
深刻影响着人们的行为、决策和心理健康。然而,情绪状态的复杂性和主观性使得其
难以直接观测和量化。传统的情绪研究多依赖于自我报告或心理学量表,但这些方法
存在明显的局限性,如主观性强、易受回忆偏差影响等。近年来,随着生理学、心理
学和神经科学的交叉发展,人们逐渐认识到情绪状态与生理反应之间存在密切的关联。
例如,个体在面对不同情绪刺激时,其心率、皮肤电导、肌电活动等生理指标会发生
显著变化。这些生理信号为情绪的客观测量提供了可能。同时,情绪在人类的日常生
活中起着至关重要的作用。良好的情绪状态有助于提升个体的心理韧性、增强社会互
动能力和提高生活质量,而长期的负面情绪则可能导致心理问题,如焦虑、抑郁等。
因此,如何准确识别和管理个体的情绪状态,已成为心理学、医学和人工智能等多学
科领域共同关注的焦点。
情感计算(
Affective Computing
)是由麻省理工学院的
Picard
教授于
20
世纪
90
年代提出的一个新兴跨学科领域,旨在使计算机系统能够精确地处理、识别和理解人
类表达的情感信息。这一领域的出现,标志着计算机科学从传统的逻辑处理向更加人
性化、智能化的方向迈进。情感计算的核心目标是通过多模态数据(如语音、表情、
生理信号等)的分析,实现对人类情绪状态的自动识别和理解,从而为自然的人机交
互提供支持。近年来,随着机器学习、深度学习和大数据技术的飞速发展,情感计算
取得了显著的进展。例如,基于深度神经网络的情绪识别模型已经在语音、表情和文
本分析中展现出较高的准确率。此外,情感计算的应用场景也在不断拓展,从智能客
服、教育软件到心理健康监测等领域,情感计算技术都显示出巨大的潜力。然而,尽
管取得了诸多成果,情感计算仍面临诸多挑战,如跨模态数据融合、情绪的个体差异
处理以及模型的可解释性等。这些问题的解决需要计算机科学、心理学和神经科学等
多学科的深度合作。
— 1 —
忧郁症(
Depression
)作为一种常见的心理疾病,其核心症状包括情绪低落、兴
趣减退、疲劳、睡眠障碍和食欲改变等。根据世界卫生组织(
WHO
)的统计,全球
约有
3.5
亿人受到抑郁症的困扰,且其发病率呈逐年上升趋势。抑郁症不仅严重影响
患者的生活质量,还可能导致严重的社会和经济后果。然而,目前抑郁症的诊断主要
依赖于医生的临床经验和患者的自述,这种主观性强的诊断方式容易导致误诊和漏诊。
近年来,随着生物医学和人工智能技术的发展,基于数据驱动的抑郁症诊断方法逐渐
受到关注。例如,通过分析患者的生理指标(如心率变异性、脑电图等)、行为数据
(如社交媒体活动、日常行为模式)以及基因信息,研究人员试图构建更加客观、准
确的抑郁症预测模型。此外,实时监测技术的发展也为抑郁症的早期干预提供了可能。
通过智能设备(如智能手环、智能手机应用)实时监测个体的情绪状态和生理指标,
结合机器学习算法,可以在抑郁症症状出现之前发出预警,并提供个性化的干预措施。
这种技术干预不仅有助于提高抑郁症的诊断准确性,还能为心理健康管理提供新的思
路和工具。
情绪状态作为个体内心的重要体验,虽难以直接观测,但对心理健康和生活质量
有着深远影响。近年来,情感计算的兴起为情绪的客观识别提供了技术手段,通过多
模态数据的分析,实现了情绪状态的精准监测。在此基础上,针对忧郁症等心理疾病
的早期诊断与干预成为可能,多学科的交叉研究为心理健康管理开辟了新的路径,展
现出广阔的应用前景。
请你搜集相关数据或依据所给的相关数据(详见附件),完成以下问题。
问题 1:
忧郁症的早期诊断和预防非常重要,请基于语音、表情、生理信号等信
息利用机器学习算法构建情绪识别模型。
问题 2:
结合情绪状态和生活方式数据,通过预处理并提取特征构建抑郁症预测
模型,优化参数,评估模型性能,验证其在早期诊断中的优势。
问题 3:
优化情绪识别和抑郁症预测模型,提升性能。探索模型在智慧医疗中抑
郁症的早期筛查、教育中学生情绪管理方面的应用(两者选其一),提出实施方案。