动态规划入门之线性递推DP(爬梯类问题)

动态规划整体上模板性不强,甚至很隐晦。因此我写了这个专题,从动态规划入门到废弃。我所使用的题单一部分是灵茶山艾府的,一部分是平时刷题遇到的。这里我是对解题思路的一些细节补充,便于理解。如果觉得我的补充比较啰嗦,可以去看灵茶山艾府的原版解题。


这一类入门的动态规划,其实本质上是高中的排列组合+递推数列(甚至高中生会比很多大学生有更清晰的思路。)包括我们最熟悉的斐波那契数列,也是一个递推数列。广义上来说,所有于递推有关的,都属于动态规划。


为了方便阅读我将题目都copy下来了(包括中英文题目和测试样例)

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入: n = 2
输出: 2
解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶
    示例 2:
    输入: n = 3
    输出: 3
    解释: 有三种方法可以爬到楼顶。
  3. 1 阶 + 1 阶 + 1 阶
  4. 1 阶 + 2 阶
  5. 2 阶 + 1 阶
    提示:
  • 1 <= n <= 45

Analysis

在这里插入图片描述

这其实是一道高中排列组合之数列递推问题。
要想爬上第i个楼梯,只有两条路径:

  • 爬到第i-2个楼梯,再爬两格
  • 爬到第i-1个楼梯,再爬一格。
    a i a_{i} ai为爬到第i个楼梯的方案数。则 a i = a i − 1 + a i − 2 a_{i} = a_{i-1} + a_{i-2} ai=ai1+ai2

Solution

from functools import cache  
  
class Solution:  
    @cache  
    # 记忆化递归  
    def fibonacci_cache(self, n: int) -> int:  
        if n == 0:  
            return 0  
        elif n == 1 or n == 2:  
            return 1  
        else:  
            return self.fibonacci(n-1) + self.fibonacci(n-2)  
    # 非递归,迭代  
    def fibonacci(self, n: int) -> int:  
        a, b = 1, 1  
        for i in range(2, n+1):  
            a, b = b, a+b  
        return a  
    def climbStairs(self, n: int) -> int:  
        return self.fibonacci_cache(n+1)  
        # return self.fibonacci(n+1)  
  
if __name__ == '__main__':  
    s = Solution()  
    print(s.climbStairs(1))
#include <iostream>  
#include <cstring>  
  
using namespace std;  
  
class Solution {
   
     
private:  
    int *cache;  
public:  
    int climbStairs(int n) {
   
     
        cache = new int [n+1];  
        memset(cache, 0, sizeof(int ) * (n+1));  
        int rst =  this->fibonacci_cache(n+1);  
        delete []cache;  
        return rst;  
    }  
  
    int fibonacci_cache(int x) {
   
     
        if (x == 1 or x == 2) return 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不見星空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值