动态规划整体上模板性不强,甚至很隐晦。因此我写了这个专题,从动态规划入门到废弃。我所使用的题单一部分是灵茶山艾府的,一部分是平时刷题遇到的。这里我是对解题思路的一些细节补充,便于理解。如果觉得我的补充比较啰嗦,可以去看灵茶山艾府的原版解题。
这一类入门的动态规划,其实本质上是高中的排列组合+递推数列(甚至高中生会比很多大学生有更清晰的思路。)包括我们最熟悉的斐波那契数列,也是一个递推数列。广义上来说,所有于递推有关的,都属于动态规划。
为了方便阅读我将题目都copy下来了(包括中英文题目和测试样例)
70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入: n = 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: n = 3
输出: 3
解释: 有三种方法可以爬到楼顶。 - 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
Analysis

这其实是一道高中排列组合之数列递推问题。
要想爬上第i个楼梯,只有两条路径:
- 爬到第i-2个楼梯,再爬两格
- 爬到第i-1个楼梯,再爬一格。
设 a i a_{i} ai为爬到第i个楼梯的方案数。则 a i = a i − 1 + a i − 2 a_{i} = a_{i-1} + a_{i-2} ai=ai−1+ai−2。
Solution
from functools import cache
class Solution:
@cache
# 记忆化递归
def fibonacci_cache(self, n: int) -> int:
if n == 0:
return 0
elif n == 1 or n == 2:
return 1
else:
return self.fibonacci(n-1) + self.fibonacci(n-2)
# 非递归,迭代
def fibonacci(self, n: int) -> int:
a, b = 1, 1
for i in range(2, n+1):
a, b = b, a+b
return a
def climbStairs(self, n: int) -> int:
return self.fibonacci_cache(n+1)
# return self.fibonacci(n+1)
if __name__ == '__main__':
s = Solution()
print(s.climbStairs(1))
#include <iostream>
#include <cstring>
using namespace std;
class Solution {
private:
int *cache;
public:
int climbStairs(int n) {
cache = new int [n+1];
memset(cache, 0, sizeof(int ) * (n+1));
int rst = this->fibonacci_cache(n+1);
delete []cache;
return rst;
}
int fibonacci_cache(int x) {
if (x == 1 or x == 2) return 1

最低0.47元/天 解锁文章
714

被折叠的 条评论
为什么被折叠?



