学会了爬楼梯,还不会动态规划吗?——DP中的爬楼梯问题

1. 写在前面

哈喽,大家好,我是jiaoxingk, 本篇内容将带你从爬楼梯问题入门动态规划

动态规划作为算法题中比较重要的一章节了,同时也是比较难写的,但是找到规律之后,大部分题无非都是在经典问题上面做变形。

本篇文章重点在于通过题目来理解DP,并不是从晦涩难懂的概念讲起

下面,我们来看看DP中的爬楼梯问题:

2.  爬楼梯

掌握DP唯一能做的就是刷题,所以我们从一道简单的经典例题入手:

我们先来看看题目:

70. 爬楼梯

2.1 思路

2.1.1 分解子问题

我们从题目可得,我们求的是到达第n阶的方法数,那么我们应该从这个n出发,找到与它相似的、规模更小的子问题。

比如,我们现在求到达n - 1、n - 2  .. . ... 到达第1阶的方案数。

显然,到达第1阶的方案数,我们是清楚的。

我们解决DP问题的时候,就应该将大问题转换为规模更小、更相似的小问题。因为这样,我们就可以通过递归或者递推的形式一步一步从小的求出大的。(就跟剥洋葱一样,你要知道里面是什么,你就得一层一层拨开)

 2.1.2 状态定义和状态转移方程

我们要求的是到达第n层的方案数

那么,我们可以定义状态为: f[i]: 从0阶开始,到达第i阶的方案数

现在,问题来了,为什么可以这样定义呢?

我们可以先枚举一下,从0开始的方案数:

1   1    2    3    5......

我们每次可以走1步或者2步,现在考虑走到第3阶的情况:

  • 从1阶走上来
  • 从2阶走上来

这两种情况是相互独立的,所以通过加法原理,就可以求得第3阶的情况了,所以我们扩展到n的形式:

加法原理是分类计数原理,常用于排列组合中,具体是指:做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第n类方式有Mn种方法,那么完成这件事情共有M1+M2+……+Mn种方法。

f[n] = f[n - 1] + f[n - 2]  

要么从n - 1走上来,要么从n - 2走上来。

以上就是状态转移方程。

2.1.3 初始化

0阶:1种

1阶:1种

2.2 代码实现

class Solution:
    def climbStairs(self, n: int) -> int:
        f = [0] * (n + 1)
        f[0] = 1
        f[1] = 1
        for i in range(2 , n + 1):
            f[i] = f[i - 1] + f[i - 2]
        return f[n]

3. 结尾

本篇文章只是简单从爬楼梯问题引入了动态规划,可以看到通过DP的形式,我们可以逐步推导出当前的状态,是非常简洁和方便的。

  • 25
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jiaoxingk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值