小时候我们都玩过爬楼梯的游戏:两人猜拳,赢了可向上爬一级,谁先到最高级则获胜。作为大学生,我们应该玩一个更有水平的游戏。
现在一个人要上n级楼梯,每一步可以选择上一级或者上两级,但是不能后退。求上这n级楼梯的方案数。
-
Input
第一行只有一个整数T(1<=T<=45),表示数据组数。
下面的T行每一行有一个整数n(1<=n<=45),表示有多少级楼梯。
-
Output
对于每一组数据输出一个整数s,表示方案数。
-
Sample Input
4 1 2 3 4
-
Sample Output
1 2 3 5
一步1或2阶,有几种达到n阶的方案
典型dp,用i已达到阶数,状态dp[I]表示达到I阶楼梯的方案数,状态转移方程为dp[i] = dp[i - 1] + dp[i - 2](在到达dp[i - 1]或dp[i - 2]后再上1阶或2阶即到达,因此方案数为两种可能之和)
#include
int dp[50] = {0, 1, 2 };
int main()
{
int T,n;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
for (int i =3; i <= n; i++) //状态转移
dp[i] = dp[i - 1] + dp[i - 2];
printf("%d\n", dp[n]);
}
return 0;
}