自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 图像融合文献《SuperFusion: A Versatile Image Registration andFusion Network with Semantic Awareness》

然后计算红外特征和可见光特征的局部相关体积,即计算可见光特征中的每个位置(j,k)与变形后的红外特征在位置(j+m,k+n)处的点积,其中(m,n)是预设的一组离散位移偏移量,在本文中(m,n)∈{-12,-8,-4,0,4,8,,12},该点积度量两个特征向量的相似性,值越大表示匹配程度越高。首先以可见光图像和移动的红外图像为输入,本文设计了一种新的密集匹配器(Dense Matcher)来估计红外到可见光的变形场,利用估计的变形场对未配准的红外图像进行重采样,即可得到配准的红外图像。

2025-03-17 16:17:36 1238

原创 阅读文献《RFNet Unsupervised Network for Mutually Reinforcing Multi-modal Image Registration and Fusion》

在图像平移和图像融合的基础上分别定义了粗、精两个阶段的度量。进行空间转换,然后再经过卷积层,对于纹理保存,引入梯度通道注意块,聚合绝对梯度以更好地表示特征图中的信息丰富度,通过联合使用最大池化和平均池化操作来聚合信息,然后将两个分支的结果添加并馈送到两个单独的多层感知器中,以生成共享的通道关注权重,最后经过几个卷积层将特征映射回来生成融合图像。这一模块的结构图如上图所示,分两个阶段训练,第一阶段,固定变形块中的参数,对F2M中的参数进行优化,变形块依靠初始化参数生成变形场,实现了以纹理为中心的图像融合。

2025-03-17 09:30:49 1021

原创 阅读文献《U2Fusion:A Unified Unsupervised Image Fusion Network》

本研究提出了一种新的统一的无监督的端到端图像融合网络,称为U2Fusion,它能够解决不同的融合问题,包括多模态、多曝光和多焦点情况。U2Fusion通过特征提取和信息测量,自动估计相应源图像的重要程度,并给出自适应的信息保存度。因此,不同的融合任务统一在同一个框架中。

2025-03-04 20:54:49 1242

原创 阅读文献《MulFS-CAP: Multimodal Fusion-supervised Cross-modality Alignment Perception for Unregistered In

本文对未配准红外图像与可见光图像的融合进行了研究,提出了一种新的一阶段融合方法,这是一种用于未配准红外可见图像单阶段融合的新框架。本文提出了一种模态字典补偿的一致性特征学习方法,解决了由于红外和可见光图像之间的模态差异而导致的特征不一致;提出了一种跨模态对齐感知方法,有效地纠正了细节特征中的畸变及其对融合结果的影响。大量的实验证明了本文的方法比现有方法的有效性和优越性。

2025-03-01 19:49:48 1639

原创 阅读文献《A Deep Learning Framework for Infrared and Visible Image Fusion Without Strict Registration》

本文提出 了一种用于红外和可见光图像融合的深度学习框架,旨在将融合算法 从严格的配准中解放出来。在技术上,设计了卷积神经网络(CNN)- Transformer 分层交互嵌入(CTHIE)模块,从源图像中提取特征。此外,设计了动态再聚合特征表 示(DRFR)模块,使用基于自关注的特征再聚合方案对特征进行对齐。 最后,为了有效利用网络不同层次的特征,引入了一种基于多模态特 征交互传输的全感知前向融合(FPFF)模块进行特征融合,重建融合 后的图像。

2025-02-26 11:07:27 1223

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除