切蛋糕
题目描述
简单来说就是,输入n,m以及n个数。从 n n n 个数找出连续的 k ( 1 ≤ k ≤ m ) k(1 \le k\le m) k(1≤k≤m) 个数的和最大。
形式化地,在数列 { p n } \{p_n\} {pn} 中,找出一个子段 [ l , r ] ( r − l + 1 ≤ m ) [l,r](r-l+1\le m) [l,r](r−l+1≤m),最大化 ∑ i = l r p i \sum\limits_{i=l}^rp_i i=l∑rpi。
数据规模与约定
- 对于 20 % 20\% 20% 的数据,有 1 ≤ n ≤ 100 1\le n\le100 1≤n≤100。
- 对于 100 % 100\% 100% 的数据,有 1 ≤ n ≤ 5 × 1 0 5 1\le n\le5\times 10^5 1≤n≤5×105, ∣ p i ∣ ≤ 500 |p_i|≤500 ∣pi∣≤500。
保证答案的绝对值在 [ 0 , 2 31 − 1 ] [0,2^{31}-1] [0,231−1] 之内。
思考过程
好久不敲代码,很生疏。
起初漏掉了1<k<m,以为是区间大小固定.意识到后,不由得联想的P1115 最大子段和,不过这个不限区间。我就先去做了这道,找找思路。我大胆猜想是不是用队列控制区间,再和这道题结合,但时间超限就是必然。关于这两个的结合,实在想不到合适的方法。看到标签有前缀和,每个区间求一遍,也肯定超。看了题解就是这篇,注释太少,看来重在“意会”,唉,不懂。磨蹭废了好长时间,不如早点代入数据,走一遍。还好没放弃这道。
代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
#define fi first
#define se second
int a[500010];
signed main()
{
int n,m,num,ans=-0x3f3f3f3f;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>num;
a[i]=a[i-1]+num;
}
deque<int> q;
q.push_back(0);//先将0,放进去,防止漏掉首项
for(int i=1;i<=n;i++)
{
while(q.front()+m<i)//越界,超出区间,
q.pop_front();
ans=max(ans,a[i]-a[q.front()]);
while(!q.empty()&&a[q.back()]>=a[i])//a[i]的前缀和更小,后边的直接-a[i]更大
q.pop_back();//所以从后往前pop
//这里!q.empty()不能漏,不然会死循环
q.push_back(i);//将i的值不断存入,-a[i]来得到新的区间和
}
cout<<ans<<endl;
}
ans=max(ans,a[i]-a[q.front()]);
每一个a[i]-a[q.front()},都是从i往前的子段中的max,这是因为下面这两行代码,会把不合适的给pop
while(!q.empty()&&a[q.back()]>=a[i])
q.pop_back();如果有更小的a[i],会将其他pop,也就是q队列所存的是最小的前缀和下标,这样a[i]-a[q.front()]也就最大了