Python的matplotlib可视化数据分析图表

  • Python可视化数据分析图表:
  •   在数据分析与机器学习中,我们经常用到大量的可视化操作。一张精美的图表,不仅能够展示大量的信息,更能够直观地体现数据之间隐藏的关系。数据分析图表的类型包括条形图、柱状图、折线图、饼图、散点图、面积图、环形图、雷达图等。此外,通过图表的相互叠加还可以生成复合型图表。 不同类型的图表适用不同的场景,可以按使用目的选择合适的图表类型。
  • matplotlib
  • matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包。我将在这篇文章中介绍matplotlib并介绍如何使用这些对象来实现绘图。matplotlib使用numpy进行数组运算,并调用一系列其他的Python库来实现硬件交互。
  • numpy
  • NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库 
  • python可视化的基础代码

1.先下载matplotlib的库

pip install matplotlib https://pypi.tuna.tsinghua.edu.cn/simple some-package 

2.再导入matplotlib和numpy包

import matplotlib.pyplot as plt
import numpy as np 

python里figure的用法

在Python中,figure函数是matplotlib.pyplot模块中的一个重要函数,用于创建和管理图形窗口。它允许用户创建多个图形窗口(即figure对象),每个窗口中可以包含一个或多个子图(subplot)。figure函数提供了丰富的参数,允许用户自定义图形的尺寸、分辨率、背景颜色、边框颜色等属性。

1.创建图形窗口

# 设置画布的宽度为8英寸,高度为6英寸,分辨率为80,及每英寸点数为80.设置图形的背景颜色为green
plt.figure(figsize = (8,6),dpi = 80, facecolor = 'green')

2.添加子图

#使用add_subplot方法可以在同一个图形窗口中添加多个子图。
fig.add_subplot(221)
fig.add_subplot(222) 
#将在同一个2x2的网格中创建两个子图,编号分别为1和2。

3.设置图形属性

#设置子图的标题
ax.set_title('示例图形')
ax.set_xlabel('X轴')
ax.set_ylabel('Y轴')
#分别设置X轴和Y轴的标签。

4.保存图形

#使用savefig方法可以将图形保存到本地文件。
fig.savefig('example.png', dpi=300)
#将图形保存为PNG格式,分辨率为300dpi。

参数说明

  • num:图像编号或名称,数字为编号,字符串为名称。
  • figsize:指定figure的宽和高,单位为英寸。
  • dpi:参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80。
  • facecolor:背景颜色。
  • edgecolor:边框颜色。
  • frameon:是否显示边框。

部分示例代码截图

三维绘图函数Axes3D

  1.  mpl_toolkits.mplot3d是Matplotlib里面专门用来画三维图的工具包。
  2.  Axes3D是mpl_toolkits.mplot3d中的一个绘图函数。
  3.  创建 Axes3D主要有两种方式,一种是利用关键字projection='3d’来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D。

下面是利用三维绘图函数Axes3D做的代码

import matplotlib.pyplot as plt  
import numpy as np  
from mpl_toolkits.mplot3d import Axes3D  
  
fig = plt.figure()  
ax = Axes3D(fig)  
delta = 0.125  
  
# 生成代表X轴数据的列表  
x = np.arange(-4.0, 4.0, delta)  
# 生成代表Y轴数据的列表  
y = np.arange(-3.0, 4.0, delta)  
# 对x、y数据执行网格化  
X, Y = np.meshgrid(x, y)  
Z1 = np.exp(-X**2 - Y**2)  
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)  
# 计算Z轴数据(高度数据)  
Z = (Z1 - Z2) * 2  
  
# 绘制3D图形  
ax.plot_surface(X, Y, Z,  
    rstride=1,  # rstride(row)指定行的跨度  
    cstride=1,  # cstride(column)指定列的跨度  
    cmap=plt.get_cmap('rainbow'))  # 设置颜色映射  
  
# 设置Z轴范围  
ax.set_zlim(-2, 2)  
  
# 显示图形  
plt.show()

Python里的matplotlib和Axes3D的结果总概述

一、Matplotlib概述

Matplotlib是一个广泛使用的Python数据可视化库,它基于MATLAB的功能和用户体验设计,因此具有类似于MATLAB的API和语法。Matplotlib的核心设计思想是“一切皆可绘制”,为用户提供了丰富的图表类型和自定义选项,使得数据分析师和科学家可以轻松地创建高质量的图表。

  1. 主要功能
    • 2D图表:包括直方图、条形图、折线图、散点图等。
    • 3D图表:包括三维直方图、三维条形图、三维折线图等。
    • 地理数据可视化:支持地图、地理数据的绘制和分析。
    • 交互式可视化:支持在Jupyter Notebook等环境中创建交互式图表。
  2. 核心概念
    • Axes对象:图表的基本单元,用于定义图表的坐标系、刻度、标签等。
    • Figure对象:Axes对象的容器,用于定义图表的大小、背景颜色、边框等。
    • Artist对象:图表的基本元素,包括线条、点、文本等。
    • Patch对象:用于绘制矩形、圆形等形状的基本元素。
    • Text对象:用于绘制文本和标签。
    • Subplot对象:用于创建多个子图,实现多个图表在一个Figure中的布局。
  3. 配置方法
    • 永久配置:通过修改配置文件(如matplotlibrc)来设置永久有效的默认值。
    • 动态配置:在代码中通过rcParams字典访问并修改所有已配置的参数。

二、Axes3D概述

Axes3D是Matplotlib中的一个子模块,专门用于绘制三维图表。它提供了丰富的三维绘图函数和工具,使得用户能够轻松创建复杂的三维图形。

  1. 主要功能
    • 绘制三维曲面:通过surface、contour等函数可以绘制二维函数的3D曲面图。
    • 定制坐标轴:支持向画布的任意位置添加自定义大小的坐标系统,同时显示坐标轴。
    • 刻度定制:通过Locator和Formatter类可以指定刻度线的位置和刻度标签的格式。
    • 隐藏和移动轴脊:可以隐藏或移动坐标轴的轴脊,以满足不同的可视化需求。
  2. 使用示例
    • 通过创建一个Axes3D对象,用户可以开始绘制三维图表。
    • 使用plot_surface等函数可以绘制三维曲面图,并通过设置参数来定制图表的外观和样式。
    • 使用set_zlim等方法可以设置坐标轴的范围,以满足不同的数据可视化需求。

总之,Matplotlib和Axes3D为Python用户提供了强大的数据可视化工具,使得用户能够轻松地创建高质量的二维和三维图表,以满足不同的数据分析需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值