前言
提醒:
文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。
其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。
文章目录
谐波平衡法
谐波平衡法(Harmonic Balance Method, HBM)是一种用于求解非线性振动系统的近似解析方法。它假设系统的稳态响应可以表示为有限项谐波的叠加,并通过平衡谐波项的系数来求解系统的响应。谐波平衡法特别适用于弱非线性系统,能够有效地分析系统的幅频特性、共振行为和非线性现象。
1. 谐波平衡法的基本思想
谐波平衡法的核心思想是将非线性系统的稳态响应表示为傅里叶级数的形式,假设响应主要由基频和谐波成分组成。通过将响应代入运动方程,并平衡各谐波项的系数,可以得到关于振幅和相位的代数方程组,进而求解系统的响应。
2. 谐波平衡法的步骤
以下以单自由度非线性系统为例,详细说明谐波平衡法的步骤。
2.1 系统模型
考虑一个单自由度非线性系统,其运动方程为:
m x ¨ + c x ˙ + k ( x ) = F ( t ) m \ddot{x} + c \dot{x} + k(x) = F(t) mx¨+cx˙+k(x)=F(t)
其中:
- m m m 是质量;
- c c c 是阻尼系数;
- k ( x ) k(x) k(x) 是非线性刚度函数;
- F ( t ) = F 0 sin ( ω t ) F(t) = F_0 \sin(\omega t) F(t)=F0sin(ωt) 是外部简谐激励。
2.2 假设响应形式
假设系统的稳态响应为基频谐波的形式:
x ( t ) = X sin ( ω t + ϕ ) x(t) = X \sin(\omega t + \phi) x(t)=Xsin(ωt+ϕ)
其中:
- X X X 是响应的振幅;
- ϕ \phi ϕ 是响应的相位角。
2.3 代入运动方程
将假设的响应 x ( t ) x(t) x(t) 代入运动方程,并计算各阶导数:
x
˙
(
t
)
=
ω
X
cos
(
ω
t
+
ϕ
)
\dot{x}(t) = \omega X \cos(\omega t + \phi)
x˙(t)=ωXcos(ωt+ϕ)
x
¨
(
t
)
=
−
ω
2
X
sin
(
ω
t
+
ϕ
)
\ddot{x}(t) = -\omega^2 X \sin(\omega t + \phi)
x¨(t)=−ω2Xsin(ωt+ϕ)
对于非线性刚度 k ( x ) k(x) k(x),假设其为立方刚度:
k ( x ) = k 1 x + k 3 x 3 k(x) = k_1 x + k_3 x^3 k(x)=k1x+k3x3
将 x ( t ) = X sin ( ω t + ϕ ) x(t) = X \sin(\omega t + \phi) x(t)=Xsin(ωt+ϕ) 代入 k ( x ) k(x) k(x):
k ( x ) = k 1 X sin ( ω t + ϕ ) + k 3 X 3 sin 3 ( ω t + ϕ ) k(x) = k_1 X \sin(\omega t + \phi) + k_3 X^3 \sin^3(\omega t + \phi) k(x)=k1Xsin(ωt+ϕ)+k3X3sin3(ωt+ϕ)
利用三角恒等式 sin 3 ( θ ) = 3 4 sin ( θ ) − 1 4 sin ( 3 θ ) \sin^3(\theta) = \frac{3}{4} \sin(\theta) - \frac{1}{4} \sin(3\theta) sin3(θ)=43sin(θ)−41sin(3θ),忽略高次谐波项(假设系统响应主要由基频成分主导),得到:
k ( x ) ≈ k 1 X sin ( ω t + ϕ ) + 3 4 k 3 X 3 sin ( ω t + ϕ ) k(x) \approx k_1 X \sin(\omega t + \phi) + \frac{3}{4} k_3 X^3 \sin(\omega t + \phi) k(x)≈k1Xsin(ωt+ϕ)+43k3X3sin(ωt+ϕ)
2.4 平衡谐波项
将 x ( t ) x(t) x(t)、 x ˙ ( t ) \dot{x}(t) x˙(t)、 x ¨ ( t ) \ddot{x}(t) x¨(t) 和 k ( x ) k(x) k(x) 代入运动方程:
m ( − ω 2 X sin ( ω t + ϕ ) ) + c ( ω X cos ( ω t + ϕ ) ) + k 1 X sin ( ω t + ϕ ) + 3 4 k 3 X 3 sin ( ω t + ϕ ) = F 0 sin ( ω t ) m (-\omega^2 X \sin(\omega t + \phi)) + c (\omega X \cos(\omega t + \phi)) + k_1 X \sin(\omega t + \phi) + \frac{3}{4} k_3 X^3 \sin(\omega t + \phi) = F_0 \sin(\omega t) m(−ω2Xsin(ωt+ϕ))+c(ωXcos(ωt+ϕ))+k1Xsin(ωt+ϕ)+43k3X3sin(ωt+ϕ)=F0sin(ωt)
将方程整理为:
( − m ω 2 X + k 1 X + 3 4 k 3 X 3 ) sin ( ω t + ϕ ) + c ω X cos ( ω t + ϕ ) = F 0 sin ( ω t ) (-m \omega^2 X + k_1 X + \frac{3}{4} k_3 X^3) \sin(\omega t + \phi) + c \omega X \cos(\omega t + \phi) = F_0 \sin(\omega t) (−mω2X+k1X+43k3X3)sin(ωt+ϕ)+cωXcos(ωt+ϕ)=F0sin(ωt)
利用三角恒等式将 sin ( ω t + ϕ ) \sin(\omega t + \phi) sin(ωt+ϕ) 和 cos ( ω t + ϕ ) \cos(\omega t + \phi) cos(ωt+ϕ) 展开:
sin
(
ω
t
+
ϕ
)
=
sin
(
ω
t
)
cos
(
ϕ
)
+
cos
(
ω
t
)
sin
(
ϕ
)
\sin(\omega t + \phi) = \sin(\omega t) \cos(\phi) + \cos(\omega t) \sin(\phi)
sin(ωt+ϕ)=sin(ωt)cos(ϕ)+cos(ωt)sin(ϕ)
cos
(
ω
t
+
ϕ
)
=
cos
(
ω
t
)
cos
(
ϕ
)
−
sin
(
ω
t
)
sin
(
ϕ
)
\cos(\omega t + \phi) = \cos(\omega t) \cos(\phi) - \sin(\omega t) \sin(\phi)
cos(ωt+ϕ)=cos(ωt)cos(ϕ)−sin(ωt)sin(ϕ)
代入后,将方程分为 sin ( ω t ) \sin(\omega t) sin(ωt) 和 cos ( ω t ) \cos(\omega t) cos(ωt) 的系数:
[ ( − m ω 2 X + k 1 X + 3 4 k 3 X 3 ) cos ( ϕ ) − c ω X sin ( ϕ ) ] sin ( ω t ) + [ ( − m ω 2 X + k 1 X + 3 4 k 3 X 3 ) sin ( ϕ ) + c ω X cos ( ϕ ) ] cos ( ω t ) = F 0 sin ( ω t ) \left[ (-m \omega^2 X + k_1 X + \frac{3}{4} k_3 X^3) \cos(\phi) - c \omega X \sin(\phi) \right] \sin(\omega t)\\ + \left[ (-m \omega^2 X + k_1 X + \frac{3}{4} k_3 X^3) \sin(\phi) + c \omega X \cos(\phi) \right] \cos(\omega t) = F_0 \sin(\omega t) [(−mω2X+k1X+43k3X3)cos(ϕ)−cωXsin(ϕ)]sin(ωt)+[(−mω2X+k1X+43k3X3)sin(ϕ)+cωXcos(ϕ)]cos(ωt)=F0sin(ωt)
平衡 sin ( ω t ) \sin(\omega t) sin(ωt) 和 cos ( ω t ) \cos(\omega t) cos(ωt) 的系数,得到两个代数方程:
(
−
m
ω
2
X
+
k
1
X
+
3
4
k
3
X
3
)
cos
(
ϕ
)
−
c
ω
X
sin
(
ϕ
)
=
F
0
(-m \omega^2 X + k_1 X + \frac{3}{4} k_3 X^3) \cos(\phi) - c \omega X \sin(\phi) = F_0
(−mω2X+k1X+43k3X3)cos(ϕ)−cωXsin(ϕ)=F0
(
−
m
ω
2
X
+
k
1
X
+
3
4
k
3
X
3
)
sin
(
ϕ
)
+
c
ω
X
cos
(
ϕ
)
=
0
(-m \omega^2 X + k_1 X + \frac{3}{4} k_3 X^3) \sin(\phi) + c \omega X \cos(\phi) = 0
(−mω2X+k1X+43k3X3)sin(ϕ)+cωXcos(ϕ)=0
2.5 求解振幅和相位
通过上述两个方程,可以求解振幅 X X X 和相位 ϕ \phi ϕ。通常,将方程写成矩阵形式:
[ A − B B A ] [ cos ( ϕ ) sin ( ϕ ) ] = [ F 0 0 ] \begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} \cos(\phi) \\ \sin(\phi) \end{bmatrix}= \begin{bmatrix} F_0 \\ 0 \end{bmatrix} [AB−BA][cos(ϕ)sin(ϕ)]=[F00]
其中:
- A = − m ω 2 + k 1 + 3 4 k 3 X 2 A = -m \omega^2 + k_1 + \frac{3}{4} k_3 X^2 A=−mω2+k1+43k3X2
- B = c ω B = c \omega B=cω
通过求解该线性方程组,可以得到 cos ( ϕ ) \cos(\phi) cos(ϕ) 和 sin ( ϕ ) \sin(\phi) sin(ϕ),进而求出 ϕ \phi ϕ 和 X X X。
3. 谐波平衡法的优点
- 适用于弱非线性系统:能够有效处理包含非线性刚度、非线性阻尼等弱非线性问题。
- 计算效率高:相比数值仿真,谐波平衡法能够快速得到系统的近似解析解。
- 揭示幅频特性:可以直接得到系统的幅频响应曲线,便于分析共振行为和非线性现象。
4. 谐波平衡法的局限性
- 高次谐波忽略:假设响应主要由基频成分主导,忽略高次谐波可能导致误差。
- 强非线性系统:对于强非线性系统,谐波平衡法的精度可能不足,需要结合其他方法(如多尺度法)。
总结
谐波平衡法是一种有效的非线性振动系统分析方法,通过假设系统的稳态响应为有限项谐波的叠加,并平衡谐波项的系数,可以求解系统的振幅和相位。该方法特别适用于弱非线性系统,能够揭示系统的幅频特性和共振行为。
数学解释
谐波平衡法的原理
谐波平衡法的核心思想是将系统的响应表示为傅里叶级数,即:
W
(
x
,
t
)
=
∑
m
=
−
M
M
W
m
(
x
)
e
i
ω
m
t
W(x,t) = \sum_{m=-M}^{M} W^m(x) e^{i\omega_m t}
W(x,t)=m=−M∑MWm(x)eiωmt
其中,
W
(
x
,
t
)
W(x,t)
W(x,t) 是系统的响应,
ω
\omega
ω 是基频,
M
M
M 是保留的谐波数,
W
m
(
x
)
W^m(x)
Wm(x) 是傅里叶系数。
通过将控制方程(如纳维-斯托克斯方程)在频率域中分解,并利用傅里叶级数表示,可以将时间导数转换为频率域中的代数操作。具体来说,时间导数可以通过以下公式计算:
∂
W
∗
∂
t
=
D
W
∗
\frac{\partial W^*}{\partial t} = D W^*
∂t∂W∗=DW∗
其中,
D
D
D 是拟谱
N
×
N
N \times N
N×N 运算符,
W
∗
W^*
W∗ 是时间级别的求解向量。
谐波平衡法的数学公式
谐波平衡法的控制方程通常为积分形式的纳维-斯托克斯方程,用于描述随角速度
Ω
\Omega
Ω 稳定旋转的相对参考坐标系中的差分表面积
d
a
da
da 的刚性任意控制体积
V
V
V:
∫
V
∂
W
∂
t
d
V
+
∮
(
F
−
G
)
⋅
d
a
=
∫
V
H
d
V
\int_V \frac{\partial W}{\partial t} dV + \oint (F - G) \cdot da = \int_V H dV
∫V∂t∂WdV+∮(F−G)⋅da=∫VHdV
其中:
- W W W 为守恒变量的求解矢量, W = [ ρ , ρ v , ρ E ] T W = [\rho, \rho v, \rho E]^T W=[ρ,ρv,ρE]T
- F F F 为无粘性通量, F = [ ρ v r , ρ v ⊗ v r + p I , ρ E v r + p v ] T F = [\rho v_r, \rho v \otimes v_r + p I, \rho E v_r + p v]^T F=[ρvr,ρv⊗vr+pI,ρEvr+pv]T
- G G G 为粘性通量, G = [ 0 , T , T ⋅ v r + q ] T G = [0, T, T \cdot v_r + q]^T G=[0,T,T⋅vr+q]T
- H H H 为源矢量, H = [ S u , ρ Ω ⊗ v , S u ] T H = [S_u, \rho \Omega \otimes v, S_u]^T H=[Su,ρΩ⊗v,Su]T
- ρ \rho ρ 为密度
- v v v 为绝对速度
- v r v_r vr 为相对速度, v r = v − r ⊗ Ω v_r = v - r \otimes \Omega vr=v−r⊗Ω
- E E E 为总焓
- p p p 为压力
- T T T 为剪切应力张量
- q q q 为热通量
- S u S_u Su 为用户自定义的源项。
通过将控制方程应用于所有离散时间级别
W
∗
W^*
W∗,可以得到谐波平衡方程:
∫
V
D
W
∗
d
V
+
∮
(
F
∗
−
G
∗
)
⋅
d
a
=
∫
V
H
∗
d
V
\int_V D W^* dV + \oint (F^* - G^*) \cdot da = \int_V H^* dV
∫VDW∗dV+∮(F∗−G∗)⋅da=∫VH∗dV
其中,
F
∗
F^*
F∗、
G
∗
G^*
G∗ 和
H
∗
H^*
H∗ 使用对应的时间级别求解进行计算。
谐波平衡法的工程应用
谐波平衡法在工程中具有广泛的应用,特别是在以下领域:
- 机械工程:用于分析和设计旋转机械,如压缩机、涡轮机和风扇,以预测和控制振动和噪声。
- 航空航天:用于模拟和优化航空发动机中的非稳定流场,提高发动机的性能和可靠性。
- 电气工程:用于分析电力系统中的谐波问题,优化电力设备的设计和运行。
通过谐波平衡法,工程师可以更准确地预测和控制系统的动态行为,从而提高设计效率和系统性能。