task1文章入口:http://t.csdnimg.cn/MeF7u
task2我改进了中英文promt,得到了68.14的分数,这个分数随机性还是比较强的。
后续会继续尝试修改润色提高分数。
在task2的学习中
我仔细阅读了学习材料,感觉受益匪浅。
关于LoRA:
LoRA(Low-Rank Adaptation of Large Language Models)是一种针对大规模语言模型的轻量化微调技术。传统的语言模型微调通常需要调整整个模型的参数,这对资源和时间的要求较高。而LoRA通过引入低秩矩阵分解,只微调部分参数,从而大幅减少计算成本和显存占用。
LoRA的核心思想
LoRA的核心思想是将模型中的权重矩阵表示为两个低秩矩阵的乘积,即 ( W = W_0 + \Delta W ),其中 ( \Delta W = A \times B )。在这种表示下,只需要微调低秩矩阵 ( A ) 和 ( B ) ,而原始模型权重 ( W_0 ) 保持不变。这种方法大大减少了需要调整的参数数量,因此更加高效。
LoRA的优势
- 节省资源:LoRA可以显著降低显存占用和计算成本,适合资源受限的环境。
- 加快微调速度:由于调整的参数数量减少,微调过程更快。
- 易于集成:LoRA可以轻松集成到现有的大规模语言模型中,不需要对模型架构做大幅改动。
典型应用场景
LoRA主要应用于需要对大规模语言模型进行定制化的场景,比如:
- 特定任务的微调:在文本分类、翻译、生成等任务中,LoRA可以用来快速适应特定任务的数据。
- 多语言或多领域适应:LoRA可以用来快速调整模型以适应不同语言或领域的数据。
关于baseline的细节:
一定要先准备好环境
环境准备
相关库的下载与安装:
!pip install pandas openpyxl
之后就代码部分py还得有一定的基础。