TMM 2023 国防科技大学、中国科学技术大学
Zeng, Kai, Kejiang Chen, Weiming Zhang, and Yaofei Wang. "Upward robust steganography based on overflow alleviation." IEEE Transactions on Multimedia 26 (2023): 299-312.
一、鲁棒隐写场景
现有的隐写算法根据应用场景被分为“白盒鲁棒”和“灰盒鲁棒”。
"灰盒鲁棒"(Grey-Box Robust)是隐写术中的一个术语,用来描述一类特定的隐写算法,这些算法在设计时考虑了JPEG压缩过程中的一些信息,但不需要完整的信道状态信息。这个术语中的“灰盒”意味着算法设计者对JPEG压缩过程有一定的了解,但这种了解是有限和不完全的。在“灰盒鲁棒”隐写算法中,通常假设算法设计者知道JPEG压缩的大致质量因子(QF)范围,而不是确切的QF值。
在“灰盒鲁棒”隐写的场景中,隐写算法需要能够在以下条件下工作:
-
不完全的信道知识:算法不需要知道JPEG压缩的确切QF,但假设它在一个预期的范围内,例如,算法可能假设压缩后的QF会比原始图像的QF高或低。
-
适应性:算法需要能够适应不同的压缩条件,即使在不完全了解具体压缩参数的情况下,也能够保持隐写信息的稳定性和隐蔽性。
-
抵抗检测和压缩:算法设计要能够在一定程度上抵抗统计分析和压缩带来的影响,以减少隐写信息被检测到的风险。
“灰盒鲁棒”隐写算法的例子包括那些能够在不知道确切压缩参数的情况下,通过选择图像中的某些特定区域(如中频DCT系数)进行信息嵌入的算法。这些算法通常利用了JPEG压缩过程中的一些统计特性,如量化步骤的变化,来提高隐写信息的鲁棒性。
与之相对的是“白盒鲁棒”(White-Box Robust)和“黑盒鲁棒”(Black-Box Robust):
- 白盒鲁棒:算法设计者拥有完整的信道信息,比如确切的JPEG压缩QF,或者能够控制压缩过程。
- 黑盒鲁棒:算法设计者没有任何关于信道的信息,算法需要在完全未知的压缩条件下工作。
“向上鲁棒”和“向下鲁棒”是“灰盒鲁棒”中的两种特定场景,分别对应于JPEG压缩后QF高于或低于原始图像QF的情况。
“向上鲁棒”场景是指隐写算法只需要知道信道重压缩的QF大致高于载体图像的QF,这在在线社交网络(OSNs)中是常见的,因为它们通常根据图像内容自适应地选择重压缩QF。“向上鲁棒”隐写术关注的是在图像经过特定类型的处理(如重新压缩)后,如何保护和隐藏信息。
二、JPEG重压缩及问题
向上鲁棒隐写(Upward Robust Steganography)是指在JPEG图像上传到在线社交网络(OSNs)时,图像会被重新压缩为更高的质量因子(QF)的情况下,隐写信息仍然能够保持鲁棒性和不可检测性。这一过程中,空间溢出是一个关键问题。以下是详细的介绍:
2.1 JPEG压缩和重新压缩过程
附:JPEG图像压缩算法详解https://blog.csdn.net/linchare/article/details/100725648
视频讲解https://www.bilibili.com/video/BV1gJ4m1j7Q5/?spm_id_from=333.337.search-card.all.click&vd_source=0b1f472915ac9cb9cdccb8658d6c2e69JPEG工作原理(傅里叶变换)
(1)原始压缩
- 分割:图像被分割成8×8的块。
- DCT变换:每个块进行离散余弦变换(DCT),将空间域数据转换为频率域数据。
- 量化:DCT系数被量化,即将每个系数除以对应的量化步长
并取整。
- 编码:量化后的系数被编码,形成JPEG文件。
(2)重新压缩
- 解码:JPEG文件被解码,量化后的DCT系数被恢复。
- 反量化:量化后的系数被乘以量化步长
进行反量化。
- IDCT变换:反量化后的DCT系数被转换回空间域,形成空间值
。
- 重新量化:空间值
再次进行DCT变换,然后被量化为新的DCT系数。
- 重新编码:新的DCT系数被编码,形成新的JPEG文件。