~~~加油!~~~
先由一道经典题说起:
问题 B: 【并查集】食物链II
时间限制: 1.000 Sec 内存限制: 128 MB
题目描述
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1)当前的话与前面的某些真的话冲突,就是假话;
2)当前的话中X或Y比N大,就是假话;
3)当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
输入
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
输出
只有一个整数,表示假话的数目。
样例输入
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
样例输出
3
那么,这种类型题,我一开始想到它可能和并查集有关,不过由于这是带指向的,所以我们不能停留在普通的并查集,即“属于一个集合”。这时,这道题就可以用带权值的并查集来算。(当然还有一种方法叫 种类并查集)
不过,我觉得光想着两个东西的权值加加减减很难理解,所以我会用距离来理解权值。设置一个数组d[N],来表示每个节点到跟节点的距离。那么,如果a->b,就不难理解d[a]-d[b]=1;不过,以防万一这个式子左边可能是负的,我们写代码时要多加一些处理,即取模。
(顺带一提取模这个东西。今天才发现它很神奇。比如一个100位的数a(当然给的是字符串),要求a%b,我们可以取a的每一位...算了写下来吧。
string a;
int n;//要求a%n的值
int t=0;
for(auto i:a){
t=(t*10+i-'0')%n;//感觉余数是有点“传递性”的
}
cout<<t<<endl;
扯远了...不过余数这部分我还很蒙www,渴望有大佬来指点...跪谢)
那么,根据“距离”这个概念,我们可以轻易得出,da=db:同类;da-db=1:a吃b;db-da=1:b吃a;
思路为:1.判断a,b是否已经在一个集合
2.若不在一个集合,合并,并更新d[fa_a]的值(d[fa_b]也ok)
3.若在一个集合,判断即可
所以,这个并查集与普通并查集不同的区别大概有:1.find要更新d
2.unit的方式有多种
下面就看看代码吧:
#include<iostream>
using namespace std;
int n,k,s,x,y;
int fa[1000010],d[1000010];
int find(int i){
if(fa[i]==i){
return i;
}
int t=fa[i];
fa[i]=find(fa[i]);
d[i]=((d[i]+d[t])%3+3)%3;
return fa[i];
}
int main()
{
cin>>n>>k;
for(int i=1;i<=n;i++){
fa[i]=i;
}
int ans=0;
while(k--){
cin>>s>>x>>y;
if(x>n||y>n){
ans++;
continue;
}
if(s==2&&x==y){
ans++;
continue;
}
int fa_x=find(x),fa_y=find(y);
if(s==1){
if(fa_x==fa_y){
if((d[x]-d[y]+3)%3!=0){
ans++;
}
}else{
fa[fa_x]=fa_y;
d[fa_x]=(d[y]-d[x]+3)%3;
}
}else{
if(fa_x==fa_y){
if((d[x]-d[y]+3)%3!=1){
ans++;
}
}else{
fa[fa_x]=fa_y;
d[fa_x]=(d[y]-d[x]+4)%3;
}
}
// cout<<ans<<endl;
}
cout<<ans;
return 0;
}
综上所述,感觉带权值的并查集主要应用方面为:给出的多个物件成“环”,或有明确指向关系。
题型可以为判断加入的关系是否正确。
补充:现在再补充一道可以用带权值的并查集来做的:
五行学说的基本观点如下:
。。。(删掉了,废话)
下图可以更快地理解相生相克的关系:
小爱的身边有的 n 个物品,每个物品都应该具有五行中的一种属性。小爱对这些物品进行了 m 次观察,每次观察都是会发现两种物质之间的相生或相克关系。但这些观察不一定可靠,如果本次观察与之前的记录没有矛盾,则将这条观察记录下来; 否则,直接忽视该条观察。
请你帮助小爱统计一下,有多少条观察是被忽略的。
输入
第一行:两个整数表示 n 和 m;
第二行到第 m 行:每行表示一条观察,首先有一个字符,然后有两个整数参数 x 和 y:
+ 相生关系以字母 `s` 开头,表示 x 生 y;
+ 相克关系以字母 `k` 开头,表示 x 克 y;
输出
单个整数:表示输入中出现矛盾的记录条数。
样例输入
3 4 k 1 2 s 1 2 k 2 3 k 3 1
样例输出
2
提示
+ 对于 30% 的数据,1≤n,m≤10;
+ 对于 60% 的数据,1≤n,m≤103;
+ 对于 100% 的数据,1≤n,m≤105。
那么,一开始可能会疑惑,这是两个环,难道要设计两个环的并查集来单独做吗?但又会发现,这两个环又是有一定的关系的。所以这时候的带权并查集就要加入一点巧思:相克的两者d只差若为1,相生的两者d只差就为2。所以还是只要用一个环来维护就好,只不过d的表达可能要略微改变。
代码:
#include<iostream>
using namespace std;
//const int N=1000010;
int n,m,fa[1000010],d[1000010];
char s;
int x,y;
int find(int i){
if(fa[i]==i){
return fa[i];
}
int t=fa[i];
d[i]=(d[i]+d[t])%5;
fa[i]=find(fa[i]);
return fa[i];
}
int main()
{
cin>>n>>m;
int ans=0;
for(int i=1;i<=n;i++){
fa[i]=i;
}
while(m--){
cin>>s>>x>>y;
int fa_x=find(x),fa_y=find(y);
if(s=='s'){
if(fa_x==fa_y){
if((d[x]-d[y]+5)%5!=1){
ans++;
}
}else{
fa[fa_x]=fa_y;
d[fa_x]=(d[y]-d[x]+1+5)%5;
}
}else{
if(fa_x==fa_y){
if((d[x]-d[y]+5)%5!=2){
ans++;
}
}else{
fa[fa_x]=fa_y;
d[fa_x]=(d[y]-d[x]+2+5)%5;
}
}
}
cout<<ans;
return 0;
}
注意,这里关于距离,都要保证是正的,所以都要有先加再取模的操作。