RAG进阶:混合稠密检索和知识图谱来提升精度

0x00 简介

HuixiangDou 是群聊场景的 LLM 知识助手。群里人多口杂,机器人显然不应该答复所有消息,它的设计规则为:

  • 无关内容不吭声——拒答
  • 明确该答的,直接回复——检索
  • 不能违反核心价值观——可靠

github.com/InternLM/Hu…

(觉得好用,欢迎点亮 star)

在上一篇文章中,我们用真实群聊数据测试,对比不同方法和调参,最终拒答 F1 score 达到 75.88。

本文介绍如何混用知识图谱和稠密检索,把 F1 进一步提升到 77.57。

以下是目前所有方法对比:

方法F1 score备注
BCE+KG混合(本文)77.57KG 权重约 20%
BCE75.88需配合特定 splitter
BGE72.23使用 bge-large-zh-v1.5
BGE-M370.62测试数据 token 不足 8192,无法评估能力
M3 稠密+稀疏混合63.85使用 milvus hybrid_search 测试,WeightedRanker 中稀疏占比越大效果越差

本文使用的方法,实质是在稠密检索期间给高频词加权

  1. 简单。 核心实现仅数百行,且完美兼容旧版本,Pull Request 见 github.com/InternLM/Hu…
  2. 可靠。 在本文的反复测试中,只要参数合理就稳定有提升,不需要挑结果
  3. 成本可控。 不做多轮 LLM 也有精度提升。但为了效果更好,本文执行 2 轮 LLM NER 来提取知识库的实体词

0x01 术语介绍

为兼顾不同读者的背景,本文需要介绍涉及的词汇:

知识图谱 Knowledge Graph :一种结构化的知识库,它通过图的形式存储和组织实体、属性、关系及类型。

命名实体识别 Named Entity Recognition :提取自然语言中有意义的实体,例如人名、昵称、时间等。

稠密检索(Dense Retrieval) :非结构化方法。先用模型提取文本/图像/语音等的特征,然后计算特征间的距离匹配目标。人脸识别常用此方案。

networkx: 一个用 Python 写的开源图论和复杂网络分析库。它提供了丰富的数据结构和算法来创建、操作和研究复杂的网络结构,包括无向图、有向图、多图、无权图和加权图。

neo4j:成熟的图形数据库管理系统,使用图形来存储和查询数据。与传统的关系型数据库不同,它用节点和边来表示数据实体和它们之间的关系,而不是使用表和列。很适合保存知识图谱。

milvus: 开源向量数据库,它专门设计用于存储、搜索和分析大量的向量数据。

0x02 方案阐述

RAG 为什么需要 KG 。或者说,KG 会给 HuixiangDou 带来什么?

想象中 KG 应该:

  1. 能提升系统的可解释性。 显然稠密检索使用的高维空间无法调试
  2. 能保证术语间的层级关系。 例如在杂交水稻领域中,无论稠密、稀疏方法,都不能表达 “野败”“南优2” 的亲本关系
  3. 是无侵入的。 即 KG 不会明显干扰原有服务和精度

本文使用的 KG 以属性为中心连接 chunk。

在这里插入图片描述

以 MMDeploy 和 MMPose 项目的 README 为例,二者的交集在 “mmpose” 和 “ncnn” 等术语上。

如果某个名词(如 “ncnn”)能关联到很多文档,说明它很重要或常见。本文假设这种高频词汇,在 RAG 中应该有更大权重。

2.1 建立知识库

本文使用 qwen1.5-110B 做 NER,为降低成本使用 silicon clould API,使用的知识库仍然是 OpenMMLab 相关的 9 个算法库。

建立知识库,需要 14M token,单并发 12 小时以上,费用约 50 元。

css
 代码解读
python3 -m huixiangdou.service.kg --build

知识库建立成功后,workdir/kg 目录下有 jsonl 格式的节点和关系文件。

此时可体验检索效果,例如问怎么安装 MMPose:

css
 代码解读
python3 -m huixiangdou.service.kg --query 如何安装mmpose?

考虑到 API 欠费、网络断开等因素,期间会记录已完成的文件,支持断点续建。

2.2 可视化

HuixiangDou 中,存储知识图谱用 jsonl ,图相关计算使用 networkx。为了白嫖 neo4j的可视化工具,我们支持把 jsonl 转到 neo4j

perl
 代码解读
python3 -m huixiangdou.service.kg --dump-neo4j --neo4j-uri ${URI} --neo4j-user ${USER} --neo4j-passwd ${PWD}
# 30 万节点和关系数据,远程通信预计耗时 4 小时

这是部分节点可视化的例子,看起来很像蒲公英:

  • 红色是属性节点
  • 蓝色是 chunk
  • 橙色是文档
  • 灰色是图片

在这里插入图片描述

2.3 直接检索测试

检索过程和建库过程类似,先用 LLM 提取实体词,获取匹配的候选文档。

在这里插入图片描述

关于 score,本文事先统计所有命中个数的分布,多数问题都关联不了 100 个文档。考虑到后续还要缩放分值,因此拍脑袋直接取:

ini
 代码解读
score = min(100, count(docs)) / 100

这里的阈值也是候选文档个数:例如对某条用户输入,检索到 5 个以上候选文档判为 True,机器人继续处理这句话、不拒绝。

在这里插入图片描述

测试结果如上图,随着阈值增高,知识图谱检索结果逐渐保守,许多正类样本被错误地分类为负类。

2.4 混合检索测试

然而保守也是一种可靠。

保守特质适合计算正值 [0, +1] ,叠加到稠密检索结果上,让之前分布的方差更大。

本文使用的混合检索就是简单的“考试加分”,具体来说:

ini
 代码解读
final_score = dense_score + 0.2 * kg_score

这样在实现层面,就可以变相改阈值,而不用动稠密检索计算代码。即:

  1. 先计算 kg_score
  2. 重置 query 的阈值,即 throttle=throttle_in_config - 0.2*kg_score
  3. 继续原有稠密检索过程

这下知识图谱就可以做成开关选项,和老版本特征库完美兼容!

0x04 总结

本文基于知识图谱和稠密检索的混合方案,本质是在稠密检索中给高频词加权,能带来不到 2 个点的精度提升。

目前实现比较糙,只支持 markdown 格式和纯文本;速度方面也未做任何优化,KG-LLM 未发挥完整能力。

作者将继续完善代码,在更多领域完成测试。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 10
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值