大模型应用与边缘端推理

一、大模型概述

在人工智能领域,模型的大小和复杂度是衡量其性能的重要指标。大模型通常指的是参数数量庞大、结构复杂的深度学习模型,如GPT-3、BERT等。它们通过训练大量的数据,能够捕捉到更丰富的语义信息,从而在各种任务中表现出色。

二、大模型的应用

  1. 自然语言处理

大模型在自然语言处理领域取得了显著的成果。例如,GPT-3模型能够生成高质量的文章、对话和代码,BERT模型则在文本分类、命名实体识别等任务中表现出色。这些模型的应用使得自然语言处理技术的能力得到了极大的提升。

  1. 计算机视觉

在计算机视觉领域,大模型同样展现出了强大的性能。例如,EfficientNet等模型在图像分类、目标检测等任务中取得了优异的表现。这些模型的应用使得计算机视觉技术在图像识别、安全监控等领域得到了广泛的应用。

  1. 其他领域

除了自然语言处理和计算机视觉领域,大模型还在语音识别、推荐系统、自动驾驶等领域发挥着重要作用。随着技术的不断进步,大模型的应用范围还将不断扩大。

三、边缘端推理实现方案

虽然大模型在性能上表现出色,但其庞大的模型大小和计算复杂度使得在边缘设备上进行推理变得具有挑战性。为了解决这一问题,以下几种实现方案值得考虑:

  1. 模型压缩

模型压缩是一种减小模型大小和计算复杂度的有效方法。通过剪枝、量化等手段,可以在保证模型性能的前提下减小模型的大小和计算量。这使得大模型能够在资源有限的边缘设备上实现高效的推理。

  1. 模型分解

模型分解是将一个大的模型拆分成多个小模型的方法。这些小模型可以分别在不同的边缘设备上运行,并通过通信协议进行协同工作。这种方法可以在保证推理性能的同时,降低对单个设备的资源需求。

  1. 使用边缘计算平台

边缘计算平台为边缘端推理提供了强大的支持。这些平台通常具备高性能的计算能力和丰富的优化手段,能够支持大模型的推理。同时,它们还提供了丰富的API和工具,使得开发人员能够更方便地进行模型部署和调试。

四、总结与展望

大模型在人工智能领域的应用越来越广泛,其在各个领域的惊艳表现令人瞩目。然而,如何在资源有限的边缘设备上进行高效推理仍然是一个挑战。通过模型压缩、模型分解和使用边缘计算平台等方案,我们可以将大模型应用到更多的场景中。未来随着技术的不断进步和应用需求的不断提高,大模型在边缘端推理的实现方案也将不断优化和完善。我们期待着大模型在更多领域展现出其强大的性能和应用价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值