与互联网传统的产品经理不同,AI产品经理的能力要求、门槛等相对会更高。本文作者梳理了AI产品经理的工作流程与现有产品经理的区别,可以帮助大家更好理解这个岗位。
以下是自己在学习AI产品经理过程中的简单总结,欢迎交流。
一、AI产品经理的工作内容
AI 产品经理与普通产品经理的工作内容都可分为以下阶段:
需求定义—方案设计—跟进产品研发—验收评估——迭代反馈
- 在需求定义时,AI产品经理相对普通产品经理需要更多去考虑AI的技术边界,AI能为该需求解决什么问题。
- 方案设计时,AI产品经理和传统产品经理一样都得考虑合适合理的方案。但由于AI产品受AI能力限制,需要更多考虑实现的周期及成本收益比。
- 跟进产品研发时,AI产品经理同普通产品一样,需要懂产品的研发流程及每个阶段对应人员输入输出产物。不过AI产品需要建模,因此对于建模流程的了解对AI产品经理来说很重要。
- 验收评估时, 普通产品经理通过业务要求或自己写的PRD验收需求,但AI产品经理多了对模型的验收。模型评估指标是什么?模型评估的过程是什么?模型结果是否在合理范围?这些是需要考虑的。
二、AI产品经理的工作流程
AI产品经理的工作流程如下图所示:
可见AI产品经理工作流程与普通产品经理工作流程相比,多了模型构建与验收这块。因此在方案设计阶段,对模型该用什么算法构建、对模型指标要求是需要考虑进去的。AI产品经理的协作对象也多了算法工程师。
三、AI产品经理的能力要求
普通产品经理需要的能力一般有:需求分析能力(包含市场分析能力、用户分析能力)、方案设计能力(基本产品工具的使用、方案的结构化呈现)、沟通表达与协作能力、数据分析能力、需求管理能力、项目管理能力、对业务的深入认知能力。
AI产品经理需要的能力:除了普通产品经理需要具备的能力,需要对AI算法能实现的边界有清晰认知,另外对数据的分析能力也要求更高。
四、AI产品经理与普通产品经理的区别
- 从面向对象的区别来说,普通产品经理目前在面向B端、C端都有挺多的岗位;AI产品经理面向对象目前更多是B端,为B端去提供解决方案。个人认为在未来AI产品经理面向C端的也会有很多。
- 从实现目标的区别来说,普通产品经理对接研发工程师,交付多为需求文档、原型等,实现的更多是某个具体的功能。AI产品经理,对接算法工程师、研发工程师,除了实现具体的功能,更多的是实现一种能力,如API接口。
- 从实现边界点区别上来说,传统产品经理能输出指标明确的方案;AI产品经理很难产出指标明确的方案,因为结果有极大不确定性,需要通过后期反复调试才能看到进一步的结果走向。
- 从工作重心的区别来说,普通产品经理的工作重心在于市场、用户、运营等领域,目的在于实现用户增长和商业变现等;而AI产品经理则侧重于利用人工智能技术来提升效率。
AI产品经理需要更懂技术。传统的产品经理在产品设计完成,只需要对接一下研发工程师,确定技术方案并通过产品评审后即可开始研发了。但AI产品经理还需要先一步对接算法工程师,那么相应的,AI产品经理就要对算法基础知识有一定了解,甚至在某些领域要做到精通,这样才可以保证算法模型的训练周期与输入输出等方面是否合理,以此监控产品的可控性。
AI产品经理需要更强的数据分析能力。AI产品经理需要获高质量数据为模型构建提供基础。
如何系统的去转型学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~