AI大模型书籍丨掌握 LLM 和 RAG 技术,这本大模型小鸟书值得一看!

本指南旨在帮助数据科学家、机器学习工程师和机器学习/AI 架构师探索信息检索与 LLMs 的集成及其相互增强。特别聚焦于 LLM 和检索增强生成(RAG)技术在信息检索中的应用,通过引入外部数据库与 LLMs 的结合,提高检索系统的性能。

主要内容概览

  • 基础知识入门:从 LLMs 的基本概念开始,深入了解信息检索的基本原理,以及 RAG 技术对信息检索的显著影响。

  • LLM 与信息检索系统的结合:探讨如何通过集成外部数据库与 LLMs 来增强检索系统,实现更高效的企业数据搜索、推荐和 AI 助手解决方案。

核心学习点

  1. LLM 和 RAG 在高级搜索与信息检索系统中的应用原理
  • 理解如何利用 LLM 和 RAG 技术来构建更智能的搜索和信息检索系统。
  1. 掌握 RAG 的复杂性与检索生成技术
  • 学习 RAG 中基于检索的生成技术,特别是应用于 AI 助手场景,以实现更自然的交互和回答生成。
  1. LLM 和 RAG 的评估方法
  • 了解如何建立精确性和效率的基准,并遵循合规指南,确保生成内容的准确性和质量。
  1. 构建基于 LLM 和 RAG 的搜索引擎与推荐系统
  • 利用 LLM 模型的表征能力和 RAG 强大的检索与排序机制,打造智能搜索和推荐系统。
  1. 定制化 AI 助手的开发
  • 学习如何使用预训练的 GPT 模型开发定制化的 AI 助手,并提升客户支持和任务自动化。
  1. 实施个性化聊天机器人
  • 创建能够与用户互动的自定义聊天机器人,提升客户支持,并提供个性化体验。

通过本指南,您将全面掌握 LLM 和 RAG 技术在信息检索系统中的应用技巧,掌握构建高效、个性化的 AI 解决方案的核心技能。

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值