一文带你了解RAG(检索增强生成) | 概念理论介绍+ 代码实操(含源码)

引言

针对大型语言模型效果不好的问题,之前人们主要关注大模型再训练、大模型微调、大模型的Prompt增强,但对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数据之间的差距。

今天给大家分享的这篇文章,将介绍RAG的概念理论,并带大家利用LangChain进行编排,OpenAI语言模型、Weaviate 矢量数据库(也可以自己搭建Milvus向量数据库)来实现简单的 RAG 管道。

本文源码获取方式,回复:RAG源码

什么是RAG?

RAG的全称是Retrieval-Augmented Generation,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。

知识更新问题

最先进的LLM会接受大量的训练数据,将广泛的常识知识存储在神经网络的权重中。然而,当我们在提示大模型生成训练数据之外的知识时,例如最新知识、特定领域知识等,LLM的输出可能会导致事实不准确,这就是我们常说的模型幻觉。如下图所示:图片因此,弥合大模型的常识与其它背景知识之间的差距非常重要,以帮助LLM生成更准确和更符合背景的结果,同时减少幻觉。

解决方法

传统的解决方法是通过微调神经网络模型来适应特定领域的专有信息。尽管这种技术很有效,但它属于计算密集型的,并且需要技术专业知识,使其难以灵活地适应不断变化的信息。

2020 年Lewis等人,在知识密集型 NLP 任务中,提出了一种更灵活的技术,称为检索增强生成(RAG)[参考论文:https://arxiv.org/abs/2005.11401]。在本文中,研究人员将生成模型与检索器模块相结合,以提供来自外部知识源的附加信息,并且这些信息可以很方便的进行更新维护。

简单来说,RAG 对于LLM来说就像学生的开卷考试一样。在开卷考试中,学生可以携带参考材料,例如课本或笔记,可以用来查找相关信息来回答问题。开卷考试背后的想法是,测试的重点是学生的推理能力,而不是他们记忆特定信息的能力。

同样,事实知识与LLM的推理能力分离,并存储在外部知识源中,可以轻松访问和更新:

  • 「参数知识」:在训练期间学习到的知识,隐式存储在神经网络的权重中。
  • 「非参数知识」:存储在外部知识源中,例如向量数据库。

一般的 RAG 工作流程如下图所示:图片

「检索(Retrive)」 根据用户请求从外部知识源检索相关上下文。为此,使用嵌入模型将用户查询嵌入到与向量数据库中的附加上下文相同的向量空间中。这允许执行相似性搜索,并返回矢量数据库中最接近的前 k 个数据对象。

「增强(Augment)」 用户查询和检索到的附加上下文被填充到提示模板中。

「生成(Generate)」 最后,检索增强提示被馈送到 LLM。

LangChain实现RAG

上面介绍了RAG产生和工作原理,接下来将展示如何使用LangChain,结合 OpenAI LLM 、Weaviate 矢量数据库在 Python 中实现 RAG Pipeline。

基础环境准备

1、安装所有需要依赖的相关python包,其中包括用于编排的langchain、大模型接口openai、矢量数据库的客户端 weaviate-client。

pip install langchain openai weaviate-client

2、申请OpenAI的账户,要获取 OpenAI API 密钥,如下图所示:图片

3、在项目根目录创建.env文件,用来存放相关配置文件,如下图所示。图片4、在main目录中,加载配置文件信息,这里用到了python-dotenv包。图片

向量数据库

接下来,你需要准备一个矢量数据库作为保存所有附加信息的外部知识源。该矢量数据库是通过以下步骤填充的:1)加载数据;2)数据分块;3)数据块存储。

「加载数据」:这里选择了一篇斗破苍穹的小说,作为文档输入 。文档是txt文本,要加载文本这里使用 LangChain 的 TextLoader。

from langchain.document_loaders import TextLoader
loader = TextLoader('./斗破苍穹.txt')
documents = loader.load()

「数据分块」:因为文档在其原始状态下太长(将近5万行),无法放入大模型的上下文窗口,所以需要将其分成更小的部分。LangChain 内置了许多用于文本的分割器。这里使用 chunk_size 约为 1024 且 chunk_overlap 为128 的 CharacterTextSplitter 来保持块之间的文本连续性。

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
chunks = text_splitter.split_documents(documents)

「数据块存储」:要启用跨文本块的语义搜索,需要为每个块生成向量嵌入,然后将它们与其嵌入存储在一起。要生成向量嵌入,可以使用 OpenAI 嵌入模型,并使用 Weaviate 向量数据库来进行存储。通过调用 .from_documents(),矢量数据库会自动填充块。

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions

client = weaviate.Client(
  embedded_options = EmbeddedOptions()
)

vectorstore = Weaviate.from_documents(
    client = client,    
    documents = chunks,
    embedding = OpenAIEmbeddings(),
    by_text = False
)

RAG实现

「第一步:数据检索」 将数据存入矢量数据库后,就可以将其定义为检索器组件,该组件根据用户查询和嵌入块之间的语义相似性获取相关上下文。

retriever = vectorstore.as_retriever()

「第二步:提示增强」 完成数据检索之后,就可以使用相关上下文来增强提示。在这个过程中需要准备一个提示模板。可以通过提示模板轻松自定义提示,如下所示。

from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question},上下文: {context},答案是:
"""
prompt = ChatPromptTemplate.from_template(template)

「第三步:答案生成」 利用 RAG 管道构建一条链,将检索器、提示模板和 LLM 链接在一起。定义了 RAG 链,就可以调用它了。

from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

rag_chain = (
    {"context": retriever,  "question": RunnablePassthrough()} 
    | prompt 
    | llm
    | StrOutputParser() 
)

query = "萧炎的表妹是谁?"
res=rag_chain.invoke(query)
print(f'答案:{res}')

总的来说,RAG的生成过程如下图所示:图片

总结

本文介绍了 RAG 的概念及其背后的一些理论,本文通过Python、LangChain将其实现,在此过程中使用了 OpenAI的ChatGPT接口(可以自己搭建chatGLM3)、Weaviate矢量数据库(可以自己搭建Milvus )、OpenAI 嵌入模型实现了 RAG 管道。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

  • 13
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据提供的引用内容,可以得知prompt+RAG的流程如下: 1. 首先,使用Retriever部分在知识库中检索出top-k个匹配的文档zi。 2. 然后,将query和k个文档拼接起来作为QA的prompt,送入seq2seq模型。 3. seq2seq模型生成回复y。 4. 如果需要进行Re-rank,可以使用LLM来rerank,给LLM写好prompt即可。 下面是一个简单的示例代码,演示如何使用prompt+RAG: ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration # 初始化tokenizer、retriever和seq2seq模型 tokenizer = RagTokenizer.from_pretrained('facebook/rag-token-base') retriever = RagRetriever.from_pretrained('facebook/rag-token-base', index_name='exact', use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained('facebook/rag-token-base') # 设置query和context query = "What is the capital of France?" context = "France is a country located in Western Europe. Paris, the capital city of France, is known for its romantic ambiance and iconic landmarks such as the Eiffel Tower." # 使用Retriever部分检索top-k个匹配的文档 retrieved_docs = retriever(query) # 将query和k个文档拼接起来作为QA的prompt input_dict = tokenizer.prepare_seq2seq_batch(query, retrieved_docs[:2], return_tensors='pt') generated = model.generate(input_ids=input_dict['input_ids'], attention_mask=input_dict['attention_mask']) # 输出生成的回复 generated_text = tokenizer.batch_decode(generated, skip_special_tokens=True)[0] print(generated_text) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值