最近一直在调研AI应用,也在不断测试各家大厂的产品。下面个人拙见,希望有更懂的大佬可以指点一下。
我将市面上的AI应用大致分为三类:
1、大模型应用,基于某种大模型搭建的ai问答机器人,可以进行多轮对话、角色设定、上传文件进行分析,甚至联网搜索等。比如Kimi、文心一言、豆包、通义千问、GPT等。
2、AI Agent应用开发平台,有知识库搭建、工作流编排等功能,核心服务是为用户提供一个快速开发AI应用的平台,本质是“低代码”构建AI Bot。比如扣子coze、Dify、千帆、钉钉AI助理、BetterYeah AI、天工SkyAgents、智谱清言等。
3、提供模型精调的平台,用户可以基于平台基础模型,上传数据集,创建精调任务,比如字节的火山方舟、阿里的百炼等平台。这些平台非常大而全,是一站式的大模型开发及应用构建平台。
这些平台基本都用了个遍,给领导输出了几份调研报告(累),基于个人的使用经验,不甚严谨,有需要的朋友可以私信我。最后领导决定本地化部署Dify。Dify是一个开源的基于大语言模型的AI应用开发平台,可以部署在本地,但是使用的大模型服务还是要在对应模型官网获取API KEY,并且购买API调用额度。已支持主流的模型供应商,例如 OpenAI的GPT 系列、Anthropic的Claude系列等。不同模型的能力表现、参数类型、价格都不一样。构建AI应用的流程和coze基本一致。可以嵌入到网页上,制作拥有业务数据的官网 AI智能客服。
接下来是Dify的部署流程:
官网上对部署服务器的要求只有- CPU >= 2 Core、- RAM >= 4 GiB,但是最最最重要的是!服务器能访问外网!这一点导致我找了好久bug,都没有解决,甚至想反复重装系统。一定需要海外服务器。必备。
接下来就是在服务器上安装docker和docker compose(版本要求:Docker 19.03 or later Docker Compose 1.28 or later) 我按照这个教程安装的 blog.csdn.net/justlpf/art… 过程非常简单,最后检查一下版本就可以。遇到的难解决的bug是关于docker镜像库的,最近有很多docker镜像库都挂了,在找教程的时候需要注意发布时间。
之后就是跟着dify官网进行本地部署(官方文档:docs.dify.ai/zh-hans/get… )如果顺利的话,完全不需要修改.env和docker_compose.yaml的(需要修改域名和数据库配置的另说)
启动成功之后就是进行大模型API KEY的配置,配了一圈豆包是最难整的。
配置完之后就是对Dify工作流的继续探索了。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓