Maya 是什么
Maya 是一个开源的多语言多模态模型,基于LLaVA框架开发。它通过指令微调和多语言数据集的预训练,扩展了模型在多种语言和文化背景下的能力。Maya 包含一个新创建的包含八种语言的预训练数据集,旨在提高视觉-语言任务中的文化和语言理解。
Maya 通过毒性分析和数据集过滤,确保训练数据的安全性和质量。它支持包括中文、法语、西班牙语、俄语、印地语、日语和阿拉伯语在内的多种语言,致力于提升低资源语言的AI内容生成质量。
Maya 的主要功能
- 多语言支持:Maya 能处理和理解八种不同的语言,包括中文、法语、西班牙语、俄语、印地语、日语、阿拉伯语和英语,增强对低资源语言的支持。
- 多模态能力:结合图像和文本数据,让机器基于自然语言理解视觉世界,执行图像描述、视觉问题回答等任务。
- 指令微调:基于指令微调,更好地理解和响应自然语言指令,提升在实际应用中的性能和适应性。
- 数据集创建与毒性过滤:创建多语言图像-文本预训练数据集,进行毒性分析和过滤,确保数据的安全性和质量。
- 跨文化理解:基于多语言和多模态数据,更好地理解和处理不同文化背景下的视觉和语言信息。
Maya 的技术原理
- 模型架构:基于LLaVA 1.5架构,使用Aya-23 8B模型作为多语言语言模型(LLM)和SigLIP作为视觉编码器,支持多语言和多模态输入。
- 预训练数据集:创建包含558,000张图像的多语言图像-文本预训练数据集,涵盖八种语言,支持多语言视觉语言模型的开发。
- 毒性分析:使用LLaVAGuard 7B和Toxic-BERT对数据集中的图像和文本进行毒性分析,识别和过滤掉不安全或有害的内容。
- 预训练与微调:通过投影矩阵W将图像特征转换为语言特征,基于多轮对话数据进行预训练,优化图像和文本的对齐。在PALO 150K指令微调数据集上进行微调,进一步提升模型对指令的理解和响应能力。
- 跨模态对齐:基于投影矩阵和训练策略,优化图像特征和语言特征之间的对齐,提高模型在视觉-语言任务中的表现。
如何运行 Maya
安装
以下步骤适用于 CUDA Version: 12.4
的环境。
- 克隆仓库并进入 Maya 目录:
bash
代码解读
git clone https://github.com/nahidalam/maya
cd maya
- 安装包:
Shell
代码解读
conda create -n maya python=3.10 -y
conda activate maya
pip install --upgrade pip # 启用 PEP 660 支持
pip install -e .
- 安装额外的训练包:
Shell
代码解读
pip install -e ".[train]"
pip install flash-attn==2.6.3 --no-build-isolation --no-cache-dir
预训练
要预训练投影层,请按照以下步骤操作:
- 从 HuggingFace 获取预训练数据集,并将其放在
/dev/data/LLaVA_Pretrain
目录下。 - 下载图像并将其放在
/dev/data/images
目录下:
bash
代码解读
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/resolve/main/images.zip
运行预训练脚本:
bash
代码解读
bash scripts/maya/pretrain_aya_siglip.sh
指令微调
请从 MBZUAI/palo_multilingual_dataset 下载注释,并按照以下链接下载所有图像:
- COCO: train2017
- GQA: images
- OCR-VQA: download script
- TextVQA: train_val_images
- VisualGenome: part1, part2
下载完成后,将数据组织如下:
markdown
代码解读
instruction_tune_dataset
├── coco
│ └── train2017
├── gqa
│ └── images
├── ocr_vqa
│ └── images
├── textvqa
│ └── train_images
└── vg
├── VG_100K
└── VG_100K_2
将 palo_multilingual_dataset.json
放在 /dev/data/annotations/palo_multilingual_dataset.json
目录下。
确保在 scripts/maya/finetune_aya_siglip.sh
脚本中指定预训练模型的路径,然后运行:
bash
代码解读
bash scripts/maya/finetune_aya_siglip.sh
资源
- 项目官网:github.com/nahidalam/m…
- GitHub 仓库:github.com/nahidalam/m…
- HuggingFace 模型库:huggingface.co/maya-multim…
- arXiv 技术论文:arxiv.org/pdf/2412.07…
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓