3、行业趋势预测:2025 年这些岗位会消失?
- 高危职业:基础客服、初级文案、传统投流运营
- 新兴机会:
- AI 训练师:教企业用大模型优化业务流程
- 多模态工程师:抖音爆款视频一键生成
- AI产品经理:年薪 50 万+,懂技术更懂业务
- 大模型应用开发工程师:做企业自己的大模型业务软件
划重点:未来 3 年,AI 不是替代人类,而是创造 10 倍效率的“超级助手”!
4、解决企业业务需求
比较火的 Agent 智能体,构建企业专有的智能体和多智体,市面上很常用的,比如论文智能体,翻译智能体,提示词智能体等等一系列,多智体可以完成一些复杂工作的产出,比如产品设计,UI 出图,大概架构设计,和基本业务逻辑和接口的撰写等一套流程化工作。RAG 的话,最常用的场景就是通用智能客服和企业内部的智能客服,通用智能客服:可以替代大部分客服的售前售后工作,回答用户基本的问题,可在知识库进行问答内容拓展,企业内部的智能客服:跟公司业务密切挂钩,进行数据整合,数据清理,业务逻辑整合,让模型去检索查询公司业务相关的问题,快捷查找知识点等等一系列功能。
比如我公司主要是研发 AI 工具, 解决商家短视频运营成本的工具供他们使用,比如抖音投流数据分析,直播间数据托管自动化等等。
5、实战项目
从客服到营销,手把手教你用 AI 吃掉行业红利(真实案例拆解)
1)智能客服
项目背景 公司原有客服,销售团队每天需要处理大量重复的售前售后和客户问题,比如产品咨询、订单查询、退换货流程,会员充值,续费,活动介绍等。传统客服需要员工手动微信,企业微信回复,企业官网客服回复,效率低且人力成本高,遇到高峰期用户等待时间长,体验差。急切需要搭建一套 AI 智能客服系统,用大模型替代 80%的重复工作。
低成本落地方案
- 硬件白嫖技巧: 用阿里云学生认证(月费仅 24 元),选 2 核 4G 突发性能实例(测试足够使用);
- 工具链实测:
- 冷启动秘诀: 用 GPT-4 生成语料时,加限定词“生成售后场景口语化问答”,准确率提升 40%;”
AI 的作用
- 自动问答:基于 RAG 技术(检索增强生成),AI 能快速从企业知识库(产品手册、常见问题文档,公司简介,售前售后文档,活动文档)中提取答案,比如用户问“怎么退换货?”,AI 直接调取退换货文档,生成回复。其实使用 RAG 技术搭建问答系统"就像给 AI 装了个『企业百度』:把产品手册拆成「问题-答案」小卡片,训练 AI 秒速检索正确答案,人工只需处理 20%复杂问题"。
- 多轮对话:AI 能理解上下文,比如用户先问“手机多少钱?”,接着问“有没有优惠?”,AI 会结合之前的对话推荐优惠活动。
- 情绪安抚:遇到用户投诉,AI 会识别负面情绪,回复时自动加上安抚话术,比如“非常抱歉给您带来不便,我们会尽快帮您解决”。
细节案例 假设用户问:“我刚买的耳机充不进电怎么办?”
- 传统客服:需要人工翻找售后流程文档,再逐条回复,耗时 1-3 分钟。
- AI 客服:1 秒内检索知识库,生成回复: “您好,建议您尝试更换充电线或充电头,确认是否接触不良。如果问题仍未解决,可联系售后热线 XXX,我们将为您安排检测。” 同时附带图文版操作指南,用户点击即可查看。
干货技巧
- 知识库优化:把企业文档拆分成“问答对”,比如“退换货流程-步骤 1 到步骤 5”,AI 检索更精准。文档段落字数分层也很关键,
- 工具推荐:用 Unstructured 库自动切割 PDF/Word,用 Milvus 向量数据库和MySQL关系型数据库存储
- 效果:问题匹配准确率从 68%→82%
- 冷启动方案:初期 AI 回答不准?设置“人工兜底”,当 AI 置信度低于 80%时自动转人工。
- 情绪安抚 SOP:当检测到"投诉"、"生气"等关键词时,自动触发:
- 1. 道歉话术+emoji 2。 优先展示解决方案 3。 转人工按钮置顶
- 工具:FastText 情绪分类模型+规则引擎
- 多轮对话设计技巧:
- 秘籍:在对话状态机中设置上下文缓存窗口,保留最近 3 轮对话记录
- 工具:用 LangChain 的 Memory 模块实现,10 行代码搞定
成果:
- 成本: 总投入 1800 元(服务器+开源工具),仅为传统系统预算的 1/10;
- 数据: 人力成本下降 50%,客户差评率从 15%→3%;
- 秘密武器: 用 Dify 的‘人工兜底’功能,AI 回答不准时自动转人工,初期准确率提升 40%;(一般对于后期定制化要求高的项目一般采用的 LangChain 或直接代码编写智能客服,不用框架)
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓