北京时间 4 月 29 日凌晨 4 点 52 分,我们终于等到了 Qwen3(千问 3)的正式亮相。
从 23 年 8 月开始,我们就一路看着 Qwen 模型的开源与迭代,而这一次千问 3 的发布可能是最惊喜的一次!
阅读完官方博客,以及在官网 https://chat.qwen.ai/)测试效果后,你就可以发现:千问 3 的优点好像有点多的说不过来。
放几个关键词:全系列,开源最强,混合推理,思考更快,成本骤降,Agent 能力提升...
简直 buff 拉满,一起来感受一下!
‼️文末抽十份千问的精美周边,记得看到最后。
千问 3 是全球最强开源模型。
最强大的当属旗舰模型 Qwen3-235B-A22B,其在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等行业顶尖模型相比,不是比肩,而是超越。
在相同的计算资源下,千问 3 模型以更小的规模实现了对上一代更大体量模型的超越。其中旗舰版 Qwen3-235B-A22B 仅需 4 张 H20 就能实现本地部署,成本为 DeepSeek-R1 的 35%,做到了“小而强大”。
千问 3 这次一口气开源了 8 款模型,用千问 3 结合联网搜索,将这次开源的所有模型信息整理如下。
和官方提供的一图流校对后发现是完全正确的。
实测下来推理速度很快,幻觉仍存在但相比其他模型低了一些。
比如问它“为什么朋友说千问 3 等于‘困困困’?”,它也明白其中的隐喻,并做了高情商回复。
比如让它做一款记忆配对卡牌的 Web 小游戏,效果如下。
千问 3 是国内首个支持“混合推理”模型。
千问 3 原生支持思考模式与非思考模式两种工作方式,意味着既能在简单问题上快思考,秒出答案;又能在复杂问题上慢思考,展开多步推理和深入分析。
这种设计让用户可以根据不同任务,轻松调整花多少费用,既省成本又保证推理效果。
比如我先问一个非常简单的问题“爸爸的儿子叫什么?”千问 3 几乎没怎么思考就给出了非常全面的回答。
再比如问一个数学题,千问 3 就 CPU 烧了近半分钟。
最终也正确回答了答案是 2/3.
千问 3 原生支持 MCP 协议。
在大模型从“聊天”走向“动手做事”的关键时刻,千问 3 的设计也跟着升级了,不再只是回答问题那么简单,而是专门为 Agent 架构做了优化,提升了执行任务的效率、响应的结构化程度,还有对各种工具的适配能力。
开发者还可以使用 Qwen-Agent 来充分发挥千问 3 的 Agent 能力。Qwen-Agent 内部封装了工具调用的模板和工具调用解析器,大大降低了代码复杂性。
要给 Agent 定义可用的工具,可以使用 MCP 配置文件,使用 Qwen-Agent 内置的工具,或者自行集成其他的工具。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓