2025 年,AI 应用技术蓬勃发展。各大厂商不断迭代更新大模型;DeepSeek 横空出世,开源模型和闭源模型的竞争又回到同一起跑线;MCP协议、Agent2Agent 协议很火,定义了 AI 应用开发的范式。
作为 AI 应用开发者,不仅要学习当前层出不穷的技术框架、技术协议,更要理解学习大模型算法的基本原理。理解大模型的底层算法原理,才能更好掌握理解上层的 AI 应用技术。
本文推荐一本适合 AI 开发者、机器学习初学者的书:《大模型技术30讲》(书英文名:《Machine Learning and AI Beyond the Basics》)。
本书由极具影响力的人工智能专家 Sebastian Raschka 大佬倾力打造。Sebastian Raschka 同时还是 GitHub 项目 LLMs-from-scratch(star 数 44.4k)作者,出版《Build a Large Language Model (From Scratch)》一书(从零开始构建大模型:LLMs-from-scratch)。
Sebastian Raschka 大佬的个人主页:
这本《大模型技术30讲》英文版已整理并打包好PDF了,
扫描即可拿到↓↓↓
《大模型技术30讲》封面:
书籍介绍
本书采用独特的一问一答式风格,探讨了当今机器学习和人工智能领域中最重要的30 个问题,旨在帮助读者了解最新的技术进展。
全书共分为五个部分:神经网络与深度学习、计算机视觉、自然语言处理、生产与部署、预测性能与模型评测。每一章都围绕一个问题展开,不仅针对问题做出了相应的解释,并配有若干图表,还给出了练习供读者检验自身是否已理解所学内容。
主要内容:
-
核心章节:以简洁的方式回答 AI 领域的关键问题,将复杂概念分解为易于理解的部分。
-
主题内容广泛:涵盖了从神经网络架构和模型评估到计算机视觉和自然语言处理等多个主题。
-
实践应用:学习提升模型性能、微调大型模型等技术。
此外,该书还探讨:
-
管理神经网络训练中产生的各种随机性来源(the various sources of randomness)。
-
区分大型语言模型中的编码器和解码器架构。
-
通过数据和模型调整,以减少过拟合。
-
为分类器构建置信区间,并在有限标注数据下优化模型。
-
在不同的多 gpu 训练范例以及不同类型的生成式AI模型中,作出合理选择。
-
理解自然语言处理的性能指标。
-
理解视觉 transformers 中的归纳偏置。 本书适合机器学习初学者以及相关从业者和研究人员阅读。
目录
第一部分 神经网络与深度学习
-
第1章 嵌入、潜空间和表征
-
第2章 自监督学习
-
第3章 小样本学习
-
第4章 彩票假设
-
第5章 利用数据来减少过拟合现象
-
第6章 通过改进模型减少过拟合现象
-
第7章 多GPU训练模式
-
第8章 Transformer架构的成功
-
第9章 生成式AI模型
-
第10章 随机性的由来
第二部分 计算机视觉
-
第11章 计算参数量
-
第12章 全连接层和卷积层
-
第13章 ViT架构所需的大型训练集
第三部分 自然语言处理
-
第14章 分布假设
-
第15章 文本数据增强
-
第16章 自注意力
-
第17章 编码器和解码器风格的Transformer架构
-
第18章 使用和微调预训练Transformer
-
第19章 评测生成式大模型
第四部分 生产与部署
-
第20章 无状态训练与有状态训练
-
第21章 以数据为中心的人工智能与以模型为中心的人工智能
-
第22章 加速推理
-
第23章 数据分布偏移
第五部分 预测性能与模型评测
-
第24章 泊松回归与序回归
-
第25章 置信区间
-
第26章 置信区间与共形预测
-
第27章 合适的模型度量
-
第28章 k折交叉验证中的k
-
第29章 训练集和测试集的不一致性
-
第30章 有限的有标签数据
后记
附录 练习答案
这本《大模型技术30讲》英文版已整理并打包好PDF了,
扫描即可拿到↓↓↓