摘要:本文提出了一种利用牛顿-拉夫逊优化器(Newton-Raphson-based optimizer,NRBO)来解决城市环境下无人机三维路径规划问题的方法。这种方法将复杂的无人机航迹规划任务转化为一个优化问题,然后运用牛顿-拉夫逊优化器NRBO来解决这个优化问题。牛顿-拉夫逊优化器(NRBO)受牛顿-拉夫逊方法的启发,使用两个规则:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO)和几组矩阵来探索整个搜索过程,进一步探索最佳结果。NRSR采用Newton-Raphson方法来提高NRBO的探索能力,提高收敛速度以达到改进的搜索空间位置。我们将NRBO算法应用于城市复杂地形环境下的无人机三维航迹路径规划。通过对算法的性能进行仿真实验,我们发现该方法能够有效地规划出满足避障要求的无人机三维航迹,并且具有较高的规划效率。这意味着,我们的方法能够在城市复杂环境中,快速而准确地为无人机规划出一条既安全又高效的飞行路径,为无人机的实际应用提供了有力支持。
关键词:城市三维无人机路径规划;复杂地形三维航迹路径规划;牛顿-拉夫逊优化器NRBO
1.问题描述
无人机三维路径规划问题,简单来说,就是在三维空间中为无人机设计一条从起点到终点的飞行路线。这条路线不仅要能避开障碍物,还要保证飞行的效率。这个问题相当复杂,因为它涉及到很多限制条件,比如要避免撞到障碍物,还要保证飞行的速度和效率。所以,解决无人机三维路径规划问题需要综合考虑很多因素,才能找到一条既安全又高效的飞行路线。
2.本文提出了一种基于牛顿-拉夫逊优化器NRBO的无人机三维路径规划方法。该方法将无人机三维路径规划问题转化为一个优化问题,并利用牛顿-拉