CEC2005:12种算法跑23个经典基准函数输出和自动保存评价指标(matlab代码)

本期整理了12种受欢迎的算法跑CEC2005测试集并且输出评价指标,CEC2005是最经典的测试集,包括23个经典基准测试函数。每个算法都是独立的.m文件,方便管理和二次开发,所有main函数均加上了详细中文注释。如下图所示:

点击 mainsingle 运行单个算法,点击 maincompare 运行12个算法并且绘制收敛曲线,点击 main_indicator 代码重复运行30次并且保存平均收敛曲线和相关指标,一次性跑完所有函数,保存所有评价指标和收敛曲线,评价指标包括平均值、标准差、秩和检验p值、Friedman值、Friedman排名,并且包括原始30次运行的结果。具体如下:

算法包括经典的算法和2023最新提出的算法,具体有:

1、粒子群优化算法 (Particle Swarm Optimization, PSO);

2、差分进化算法(Differential Evolution, DE);

3、遗传算法(Genetic Algorithm,GA);

4、灰狼优化算法(Grey Wolf Optimizer,GWO);

5、鲸鱼优化算法(Whale Optimization Algorithm,WOA);

6、切诺贝利灾难优化器: Chernobyl Disaster Optimizer,CDO);

7、小龙虾优化算法(Crayfsh optimization algorithm,COA);

8、光学显微镜算法(Optical Microscope Algorithm,OMA);

9、霜冰优化算法 (Rime optimization algorithm, RIME);

10、减法优化器(Subtraction-Average-Based Optimizer,SABO);

11、雪融优化器(Snow ablation optimizer,SAO);

12、长城建造算法 (Great Wall Construction Algorithm,GWCA);

部分代码运行结果如下:

可改进算法和定制代码,可更换其它算法及测试集,可做应用。

### 使用CEC2005标准解决优化问题 CEC2005是指IEEE Congress on Evolutionary Computation (CEC)2005年发布的用于评估进化算法性能的一组测试函数集合[^1]。这些测试函数设计用来挑战不同的全局优化方法,特别是那些基于自然选择遗传机制的方法。 #### 测试函数特性 该套件包含了多种具有不同特性的单目标数值优化问题,比如多峰性、偏移峰值位置以及可变维度等特征。这使得研究者能够全面考察所提出的算法在处理复杂性多样性方面的表现能力。 #### 应用场景 对于参加Kaggle竞赛或其他类型的机器学习/数据挖掘比赛而言,理解并掌握CEC2005可以为参赛者提供一种标准化的方式去验证自己模型的有效性;同时也可以作为开发算法时的一个重要参考依据。 #### 实现示例 下面给出一段Python代码来展示如何加载并调用其中一个名为`F1`的基准函数: ```python import numpy as np from cec2005 import F1 # 假设有一个库实现了CEC2005的标准接口 def evaluate_solution(solution_vector): """计算给定解向量的目标值""" f1_instance = F1(dimension=len(solution_vector)) return f1_instance.evaluate(solution_vector) # 随机生成一个初始猜测解 initial_guess = np.random.uniform(-100, 100, size=(30,)) objective_value = evaluate_solution(initial_guess) print(f"The objective value is {objective_value}") ``` 此段程序首先导入必要的模块,接着定义了一个辅助函数`evaluate_solution()`用于接收候选解并向用户提供相应的适应度得分。最后通过随机方式创建了一组参数值,并将其传递给上述函数得到具体的结果输出
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值