互斥事件
定义
互斥事件是指在一次试验中不可能同时发生的两个事件。如果事件 A 和事件 B 是互斥的,那么事件 A 发生时,事件 B 一定不会发生,反之亦然。
数学表达
对于互斥事件 A 和 B ,有:
P
(
A
∩
B
)
=
0
P(A \cap B) = 0
P(A∩B)=0
即事件 A 和事件 B 同时发生的概率为零。
例子
- 掷骰子一次,得到的结果是“1”和“2”是互斥事件,因为在一次掷骰子中不可能同时得到“1”和“2”。
- 在一副扑克牌中,抽取一张牌的事件“抽到红桃”和“抽到黑桃”是互斥的,因为一张牌不可能同时是红桃和黑桃。
加法规则
对于互斥事件 A 和 B ,有:
P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(A∪B)=P(A)+P(B)
即事件 ( A ) 或事件 ( B ) 发生的概率等于它们各自发生的概率之和。
独立事件
定义
独立事件是指两个事件的发生互不影响。如果事件 A 和事件 B 是独立的,那么事件 A 发生与否不会影响事件 B 的发生概率,反之亦然。
数学表达
对于独立事件 A 和 B ,有:
P ( A ∩ B ) = P ( A ) × P ( B ) P(A \cap B) = P(A) \times P(B) P(A∩B)=P(A)×P(B)
即事件 ( A ) 和事件 ( B ) 同时发生的概率等于它们各自发生的概率之积。
例子
- 掷两次硬币,第一次得到正面和第二次得到正面是独立事件,因为第一次掷硬币的结果不影响第二次掷硬币的结果。
- 从一副扑克牌中,先抽一张牌(有放回),然后再抽一张牌,第一次抽到红桃和第二次抽到红桃是独立事件,因为第一次抽牌的结果不影响第二次抽牌的概率。
乘法规则
对于独立事件 A 和 B ,有:
P ( A ∩ B ) = P ( A ) × P ( B ) P(A \cap B) = P(A) \times P(B) P(A∩B)=P(A)×P(B)
即事件 ( A ) 和事件 ( B ) 同时发生的概率等于它们各自发生的概率之积。
区别总结
- 互斥事件:事件 A 和事件 B 不能同时发生。如果 A 发生,那么 B 一定不发生,反之亦然。数学表达为
P ( A ∩ B ) = 0 P(A \cap B) = 0 P(A∩B)=0 - 独立事件:事件 A 的发生与否不影响事件 B 的发生概率,反之亦然。数学表达为:
P ( A ∩ B ) = P ( A ) × P ( B ) P(A \cap B) = P(A) \times P(B) P(A∩B)=P(A)×P(B)