3. 无重复字符的最长子串
给定一个字符串 s
,请你找出其中不含有重复字符的 最长 子串的长度。
示例 1:
输入: s = "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: s = "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: s = "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
from collections import defaultdict
win = defaultdict(int) # 滑动窗口内的字符统计
left = 0
ans = 0
for right, x in enumerate(s):
win[x] += 1 # 元素进入窗口
while win[x] > 1:
win[s[left]] -= 1 # 元素出窗口
left += 1
ans = max(ans, right - left + 1) # 记录答案
return ans
3090. 每个字符最多出现两次的最长子字符串
给你一个字符串 s
,请找出满足每个字符最多出现两次的最长子字符串,并返回该子字符串的 最大 长度。
示例 1:
输入: s = “bcbbbcba”
输出: 4
解释:
以下子字符串长度为 4,并且每个字符最多出现两次:"bcbbbcba"
。
示例 2:
输入: s = “aaaa”
输出: 2
解释:
以下子字符串长度为 2,并且每个字符最多出现两次:"aaaa"
。
class Solution:
def maximumLengthSubstring(self, s: str) -> int:
from collections import defaultdict
win = defaultdict(int)
left = 0
ans = 0
for right, x in enumerate(s):
win[x] += 1
while win[x] > 2:
win[s[left]] -= 1
left += 1
ans = max(ans, right - left + 1)
return ans
1493. 删掉一个元素以后全为 1 的最长子数组
给你一个二进制数组 nums
,你需要从中删掉一个元素。
请你在删掉元素的结果数组中,返回最长的且只包含 1 的非空子数组的长度。
如果不存在这样的子数组,请返回 0 。
提示 1:
输入:nums = [1,1,0,1]
输出:3
解释:删掉位置 2 的数后,[1,1,1] 包含 3 个 1 。
示例 2:
输入:nums = [0,1,1,1,0,1,1,0,1]
输出:5
解释:删掉位置 4 的数字后,[0,1,1,1,1,1,0,1] 的最长全 1 子数组为 [1,1,1,1,1] 。
示例 3:
输入:nums = [1,1,1]
输出:2
解释:你必须要删除一个元素。
class Solution:
def longestSubarray(self, nums: List[int]) -> int:
ans = 0
left = 0
t = 1 # 可供删除的次数
for right, x in enumerate(nums):
if x == 0:
t -= 1
while t < 0: # 说明当前元素为0,且滑动窗口内前面的元素也存在为0的元素
if nums[left] == 0:
t += 1
left += 1
ans = max(ans, right - left) # 不加1是因为没有加上删除的那个0,抵消了
return ans
1208. 尽可能使字符串相等
给你两个长度相同的字符串,s
和 t
。
将 s
中的第 i
个字符变到 t
中的第 i
个字符需要 |s[i] - t[i]|
的开销(开销可能为 0),也就是两个字符的 ASCII 码值的差的绝对值。
用于变更字符串的最大预算是 maxCost
。在转化字符串时,总开销应当小于等于该预算,这也意味着字符串的转化可能是不完全的。
如果你可以将 s
的子字符串转化为它在 t
中对应的子字符串,则返回可以转化的最大长度。
如果 s
中没有子字符串可以转化成 t
中对应的子字符串,则返回 0
。
示例 1:
输入:s = "abcd", t = "bcdf", maxCost = 3
输出:3
解释:s 中的 "abc" 可以变为 "bcd"。开销为 3,所以最大长度为 3。
示例 2:
输入:s = "abcd", t = "cdef", maxCost = 3
输出:1
解释:s 中的任一字符要想变成 t 中对应的字符,其开销都是 2。因此,最大长度为 1。
示例 3:
输入:s = "abcd", t = "acde", maxCost = 0
输出:1
解释:a -> a, cost = 0,字符串未发生变化,所以最大长度为 1。
class Solution:
def equalSubstring(self, s: str, t: str, maxCost: int) -> int:
ans = 0
left = 0
for right in range(len(s)):
maxCost -= abs(ord(s[right]) - ord(t[right]))
while maxCost < 0:
maxCost += abs(ord(s[left]) - ord(t[left]))
left += 1
ans = max(ans, right - left + 1)
return ans
904. 水果成篮
你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits
表示,其中 fruits[i]
是第 i
棵树上的水果 种类 。
你想要尽可能多地收集水果。然而,农场的主人设定了一些严格的规矩,你必须按照要求采摘水果:
- 你只有 两个 篮子,并且每个篮子只能装 单一类型 的水果。每个篮子能够装的水果总量没有限制。
- 你可以选择任意一棵树开始采摘,你必须从 每棵 树(包括开始采摘的树)上 恰好摘一个水果 。采摘的水果应当符合篮子中的水果类型。每采摘一次,你将会向右移动到下一棵树,并继续采摘。
- 一旦你走到某棵树前,但水果不符合篮子的水果类型,那么就必须停止采摘。
给你一个整数数组 fruits
,返回你可以收集的水果的 最大 数目。
示例 1:
输入:fruits = [1,2,1]
输出:3
解释:可以采摘全部 3 棵树。
示例 2:
输入:fruits = [0,1,2,2]
输出:3
解释:可以采摘 [1,2,2] 这三棵树。
如果从第一棵树开始采摘,则只能采摘 [0,1] 这两棵树。
示例 3:
输入:fruits = [1,2,3,2,2]
输出:4
解释:可以采摘 [2,3,2,2] 这四棵树。
如果从第一棵树开始采摘,则只能采摘 [1,2] 这两棵树。
示例 4:
输入:fruits = [3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:可以采摘 [1,2,1,1,2] 这五棵树。
class Solution:
def totalFruit(self, fruits: List[int]) -> int:
from collections import defaultdict
win = defaultdict(int)
left = 0
ans = 0
for right, x in enumerate(fruits):
win[x] += 1
while len(win) > 2:
win[fruits[left]] -= 1
if win[fruits[left]] == 0:
del win[fruits[left]] # 删除这个水果的种类
left += 1
ans = max(ans, right - left + 1)
return ans
1695. 删除子数组的最大得分
给你一个正整数数组 nums
,请你从中删除一个含有 若干不同元素 的子数组**。**删除子数组的 得分 就是子数组各元素之 和 。
返回 只删除一个 子数组可获得的 最大得分 。
如果数组 b
是数组 a
的一个连续子序列,即如果它等于 a[l],a[l+1],...,a[r]
,那么它就是 a
的一个子数组。
示例 1:
输入:nums = [4,2,4,5,6]
输出:17
解释:最优子数组是 [2,4,5,6]
示例 2:
输入:nums = [5,2,1,2,5,2,1,2,5]
输出:8
解释:最优子数组是 [5,2,1] 或 [1,2,5]
class Solution:
def maximumUniqueSubarray(self, nums: List[int]) -> int:
from collections import defaultdict
win = defaultdict(int) # 统计滑动窗口内元素个数
left = ans = 0
tmp = 0 # 记录滑动窗口内元素总和
for right, x in enumerate(nums):
win[x] += 1
tmp += x
while win[x] > 1:
win[nums[left]] -= 1
tmp -= nums[left]
left += 1
ans = max(ans, tmp)
return ans
2958. 最多 K 个重复元素的最长子数组
给你一个整数数组 nums
和一个整数 k
。
一个元素 x
在数组中的 频率 指的是它在数组中的出现次数。
如果一个数组中所有元素的频率都 小于等于 k
,那么我们称这个数组是 好 数组。
请你返回 nums
中 最长好 子数组的长度。
子数组 指的是一个数组中一段连续非空的元素序列。
示例 1:
输入:nums = [1,2,3,1,2,3,1,2], k = 2
输出:6
解释:最长好子数组是 [1,2,3,1,2,3] ,值 1 ,2 和 3 在子数组中的频率都没有超过 k = 2 。[2,3,1,2,3,1] 和 [3,1,2,3,1,2] 也是好子数组。
最长好子数组的长度为 6 。
示例 2:
输入:nums = [1,2,1,2,1,2,1,2], k = 1
输出:2
解释:最长好子数组是 [1,2] ,值 1 和 2 在子数组中的频率都没有超过 k = 1 。[2,1] 也是好子数组。
最长好子数组的长度为 2 。
示例 3:
输入:nums = [5,5,5,5,5,5,5], k = 4
输出:4
解释:最长好子数组是 [5,5,5,5] ,值 5 在子数组中的频率没有超过 k = 4 。
最长好子数组的长度为 4 。
class Solution:
def maxSubarrayLength(self, nums: List[int], k: int) -> int:
from collections import defaultdict
win = defaultdict(int) # 统计滑动窗口内元素个数
left = ans = 0
for right, x in enumerate(nums):
win[x] += 1
while win[x] > k:
win[nums[left]] -= 1
left += 1
ans = max(ans, right-left+1)
return ans
2024. 考试的最大困扰度
一位老师正在出一场由 n
道判断题构成的考试,每道题的答案为 true (用 'T'
表示)或者 false (用 'F'
表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化 有 连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。
给你一个字符串 answerKey
,其中 answerKey[i]
是第 i
个问题的正确结果。除此以外,还给你一个整数 k
,表示你能进行以下操作的最多次数:
- 每次操作中,将问题的正确答案改为
'T'
或者'F'
(也就是将answerKey[i]
改为'T'
或者'F'
)。
请你返回在不超过 k
次操作的情况下,最大 连续 'T'
或者 'F'
的数目。
示例 1:
输入:answerKey = "TTFF", k = 2
输出:4
解释:我们可以将两个 'F' 都变为 'T' ,得到 answerKey = "TTTT" 。
总共有四个连续的 'T' 。
示例 2:
输入:answerKey = "TFFT", k = 1
输出:3
解释:我们可以将最前面的 'T' 换成 'F' ,得到 answerKey = "FFFT" 。
或者,我们可以将第二个 'T' 换成 'F' ,得到 answerKey = "TFFF" 。
两种情况下,都有三个连续的 'F' 。
示例 3:
输入:answerKey = "TTFTTFTT", k = 1
输出:5
解释:我们可以将第一个 'F' 换成 'T' ,得到 answerKey = "TTTTTFTT" 。
或者我们可以将第二个 'F' 换成 'T' ,得到 answerKey = "TTFTTTTT" 。
两种情况下,都有五个连续的 'T' 。
class Solution:
def maxConsecutiveAnswers(self, answerKey: str, k: int) -> int:
# 求滑动窗口内T和F的个数最多为k时的最大长度,如果两个同时都超过k,则满足不了要求
win = {"T": 0, "F": 0}
left = ans = 0
for right, x in enumerate(answerKey):
win[x] += 1
while win["T"] > k and win["F"] > k:
win[answerKey[left]] -= 1
left += 1
ans = max(ans, right - left + 1)
return ans
1004. 最大连续1的个数 III
给定一个二进制数组 nums
和一个整数 k
,假设最多可以翻转 k
个 0
,则返回执行操作后 数组中连续 1
的最大个数 。
示例 1:
输入:nums = [1,1,1,0,0,0,1,1,1,1,0], K = 2
输出:6
解释:[1,1,1,0,0,1,1,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 6。
示例 2:
输入:nums = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], K = 3
输出:10
解释:[0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]
粗体数字从 0 翻转到 1,最长的子数组长度为 10。
class Solution:
def longestOnes(self, nums: List[int], k: int) -> int:
left = ans = 0
for right, x in enumerate(nums):
if x == 0:
k -= 1
while k < 0:
if nums[left] == 0:
k += 1
left += 1
ans = max(ans, right - left + 1)
return ans
1658. 将 x 减到 0 的最小操作数
给你一个整数数组 nums
和一个整数 x
。每一次操作时,你应当移除数组 nums
最左边或最右边的元素,然后从 x
中减去该元素的值。请注意,需要 修改 数组以供接下来的操作使用。
如果可以将 x
恰好 减到 0
,返回 最小操作数 ;否则,返回 -1
。
示例 1:
输入:nums = [1,1,4,2,3], x = 5
输出:2
解释:最佳解决方案是移除后两个元素,将 x 减到 0 。
示例 2:
输入:nums = [5,6,7,8,9], x = 4
输出:-1
示例 3:
输入:nums = [3,2,20,1,1,3], x = 10
输出:5
解释:最佳解决方案是移除后三个元素和前两个元素(总共 5 次操作),将 x 减到 0 。
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
# 本质是求总和为sum(nums)-x的最长滑动窗口长度
left = 0
ans = -1
sum_ = sum(nums) - x
if sum_ < 0:
return -1 # 由于数组元素都为正数,一定找不出元素总和为负数的子数组
for right, x in enumerate(nums):
sum_ -= x
while sum_ < 0:
sum_ += nums[left]
left += 1
if sum_ == 0:
ans = max(ans, right - left + 1)
return len(nums) - ans if ans != -1 else -1