- 博客(3)
- 收藏
- 关注
原创 四足机器人运动学(机器人姿态与足端位置,欧拉角和旋转矩阵)控制思路
顺序的欧拉角,即物体先绕{b}的z轴旋转,在绕新坐标系{b’}的y轴旋转,再绕新坐标系{b’‘}的x轴旋转得到最终坐标系{b’‘’}),因为是相对物体坐标系旋转,所以依次。:需要通过关节电机的转动实现机器人姿态控制,就是需要求解每个关节转动的角度。通过改变四条腿的关节角度实现机器人在三个平移和三个旋转方向的小幅运动。{s}:世界坐标系,以地面上的X 点为原点,便于计算X点即。此处初始状态下,{s}和{b}平行,所以旋转矩阵。{b}:机身坐标系,以机身的形心为原点。假设初始状态下{s}和{b}重合,所以。
2025-05-01 19:41:56
1574
原创 二维平面刚体运动和三维空间刚体运动(齐次坐标,齐次变换矩阵)
仍然是定义两个坐标系,{s}相对世界静止,{b}相对三角件静止。转换为齐次坐标形式(在点坐标末尾增1,向量坐标末尾增0)通过计算对应的齐次变换矩阵,可以实现各坐标系下刚体位姿变换。,在平移p,从而得到完成运动后的{s}坐标系下P点坐标。的坐标变换:需要左乘旋转矩阵后再加上坐标原点向量。的坐标变换:只需左乘旋转矩阵,无需化为齐次矩阵。例如,在{b}坐标系下的齐次向量坐标通过左乘。可以描述{c}坐标系相对{b}坐标系的位姿。可以得到该向量在{s}中的齐次坐标。齐次变换矩阵=齐次变换矩阵。
2025-04-30 22:27:40
1948
原创 二维平面旋转矩阵和三维空间旋转矩阵
可以定义两个坐标系{s}和{b}:其中{s}坐标系相对世界固定不动,{b}相对三角件固定不动。矩阵行列式的几何意义:矩阵行列式是三维空间中立方体体积的缩放比。参考宇树科技《四足机器人控制算法——建模、控制与实践》同时,二维平面内坐标系不唯一,标准坐标基也不唯一。因为点P相对{b}坐标系不动所以坐标始终为(旋转矩阵的每个列向量都是一组标准正交基,因此。,实现了{b}中坐标到{s}坐标的变换。其中{b}中标准坐标基在{s}中表示为。要求计算点P在{s}坐标系中的坐标(便可计算出点P在{s}中的坐标。
2025-04-30 20:09:08
1528
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人