数据分析案例完整版

 

数据初步了解

 

数据有27598条,每条数据有7个特征,都是非空的。

2、数据清洗

重复值处理

看出有86条重复数据,删除后得到新的数据

缺失值处理

通过上面观察数据发现sale_count,comment_count 存在缺失值,先观察存在缺失值的行的基本情况

存在的缺失值很可能意味着售出的数量为0或者评论的数量为0,所以我们用0来填补缺失值。

数据挖掘寻找新的特征

给出各个关键词的分类类别

由title新生成两列类别

对是否是男性专用进行分析并新增一列

对每个产品总销量新增销售额这一列

3、数据分析及可视化

接下来考虑各个类别的销售情况

接下来用seaborn包给出每个店铺各个大类以及各个小类的销量销售额

关于性别

接下来考虑性别因素,了解各类产品在男性消费者中的销量占比

男士专用护肤品的销售量前三名分别是:妮维雅,欧莱雅,相宜本草。所有男士商品主要销量来自于护肤品。对于其他类这里暂时不进行分析,因为其产生大概率是basic_data也就是我们的分类集不完善导致的。观察一下男用化妆品的数据,如下:

可以看出基本都是男用唇膏。因为将唇膏归于了口红类,而口红类归于了化妆品类。接下来看看各个店铺的男士专用商品的总销量销售额是怎样的

关于时间

对评论数进行分析

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值