神经网络架构搜索代表了深度学习发展的新方向,它试图通过自动化的方式发现最优的网络结构。这一技术正在改变我们设计深度学习模型的方式,从手工设计转向算法驱动的自动化设计。
传统的网络架构设计主要依赖专家经验和直觉。然而,随着任务的复杂性增加,人工设计的局限性越发明显。NAS通过定义搜索空间、搜索策略和性能评估三个关键要素,系统化地探索可能的架构空间。
近年来,效率导向的NAS方法取得了显著进展。例如,渐进式神经架构搜索(PNAS)通过预测性能来减少评估成本,而单次路径采样则通过权重共享显著降低了计算开销。这些优化使得NAS技术更易于在实际项目中落地。