python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注软件测试)
img

正文

在这里插入图片描述

2.网格搜索

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

在这里插入图片描述

knn = KNeighborsClassifier()

# fit, predict 预测, score 得出准确率

knn.fit(x_train, y_train)

# 得出预测结果

y_predict = knn.predict(x_test)

print(“预测的目标签到位置为:”, y_predict)

# 得出准确率

print(“预测的准确率:”, knn.score(x_test, y_test))

构造一些参数的值进行搜索

param = {“n_neighbors”: [3, 5, 10]}

进行网格搜索

gc = GridSearchCV(knn, param_grid=param, cv=2)#二折交叉验证
gc.fit(x_train, y_train)

预测准确率

print(“在测试集上准确率:”, gc.score(x_test, y_test))
print(“在交叉验证当中最好的结果:”, gc.best_score_)
print(“选择最好的模型是:”, gc.best_estimator_)
print(“每个超参数每次交叉验证的结果:”, gc.cv_results_)

【分类】K近邻算法

在这里插入图片描述
在这里插入图片描述

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)

在这里插入图片描述

k值取多大?有什么影响?

  • k值取很小:容易受异常点影响
  • k值取很大:容易受最近数据太多导致比例变化

在这里插入图片描述

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
if name == “__main__”:
decision()

def knncls():
“”"
K-近邻预测用户签到位置
:return:None
“”"

读取数据

data = pd.read_csv(“./data/FBlocation/train.csv”)

print(data.head(10))

处理数据

1、缩小数据,查询数据晒讯

data = data.query(“x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75”)

处理时间的数据

time_value = pd.to_datetime(data[‘time’], unit=‘s’)
print(time_value)

把日期格式转换成 字典格式

time_value = pd.DatetimeIndex(time_value)

构造一些特征

data[‘day’] = time_value.day
data[‘hour’] = time_value.hour
data[‘weekday’] = time_value.weekday

把时间戳特征删除

data = data.drop([‘time’], axis=1)#1表示列,0表示行
print(data)#没有时间戳特征的数据

把签到数量少于n个目标位置删除

place_count = data.groupby(‘place_id’).count()
tf = place_count[place_count.row_id > 3].reset_index()#分组后逆操作,重新设置索引
data = data[data[‘place_id’].isin(tf.place_id)]

取出数据当中的特征值和目标值

y = data[‘place_id’]#取目标值
x = data.drop([‘place_id’], axis=1)#删除特征值就得到目标值

进行数据的分割训练集合测试集

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

特征工程(标准化)

std = StandardScaler()

对测试集和训练集的特征值进行标准化

x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)

进行算法流程 # 超参数

knn = KNeighborsClassifier()

# fit, predict 预测, score 得出准确率

knn.fit(x_train, y_train)

# 得出预测结果

y_predict = knn.predict(x_test)

print(“预测的目标签到位置为:”, y_predict)

# 得出准确率

print(“预测的准确率:”, knn.score(x_test, y_test))

构造一些参数的值进行搜索

param = {“n_neighbors”: [3, 5, 10]}

进行网格搜索

gc = GridSearchCV(knn, param_grid=param, cv=2)
gc.fit(x_train, y_train)

预测准确率

print(“在测试集上准确率:”, gc.score(x_test, y_test))
print(“在交叉验证当中最好的结果:”, gc.best_score_)
print(“选择最好的模型是:”, gc.best_estimator_)
print(“每个超参数每次交叉验证的结果:”, gc.cv_results_)
return None

【分类】朴素贝叶斯——文本分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
优点:

  • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
  • 分类准确度高,速度快

缺点:

  • 需要知道先验概率P(F1,F2,…|C),因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

实例:新闻数据分类

from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import numpy as pd

def naviebayes():
“”"
朴素贝叶斯进行文本分类
:return: None
“”"
news = fetch_20newsgroups(subset=‘all’)

进行数据分割

x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)

对数据集进行特征抽取

tf = TfidfVectorizer()

以训练集当中的词的列表进行每篇文章重要性统计[‘a’,‘b’,‘c’,‘d’]

x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)

进行朴素贝叶斯算法的预测

mlt = MultinomialNB(alpha=1.0)
print(x_train)
mlt.fit(x_train, y_train)
y_predict = mlt.predict(x_test)
print(“预测的文章类别为:”, y_predict)

得出准确率

print(“准确率为:”, mlt.score(x_test, y_test))
print(“每个类别的精确率和召回率:”, classification_report(y_test, y_predict, target_names=news.target_names))
return None

if name == “__main__”:
naviebayes()

【分类】决策树和随机森林

在这里插入图片描述

1.决策树

在这里插入图片描述
1.信息论
信息论的创始人,香农是密歇根大学学士,麻省理工学院博士。
1948年,香农发表了划时代的论文——通信的数学原理,奠定了现代信息论的基础
信息的单位:比特
32支球队,log32=5比特
64支球队,log64=6比特

在这里插入图片描述
在这里插入图片描述

2.决策树的算法

ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则
基尼系数:划分更仔细

3.代码实现

在这里插入图片描述
优点:

  • 简单的理解和解释,树木可视化。
  • 需要很少的数据准备,其他技术通常需要数据归一化,

缺点:

  • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
  • 决策树可能不稳定,因为数据的小变化可能会导致完全不同的树生成

改进:

  • 减枝cart算法(决策树API中已经实现)
  • 随机森林

实例:泰坦尼克号预测生死

泰坦尼克号数据
在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。在泰坦尼克号的数据帧不包含从剧组信息,但它确实包含了乘客的一半的实际年龄。关于泰坦尼克号旅客的数据的主要来源是百科全书Titanica。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。

我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。

其中age数据存在缺失。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

from sklearn.model_selection import train_test_split, GridSearchCV
import pandas as pd
from sklearn.tree import DecisionTreeClassifier, export_graphviz

def dieornot():
“”"
泰坦尼克生与死
:return: None
“”"
data=pd.read_csv(“http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt”)

print(data.info())

x=data[[‘pclass’, ‘age’, ‘sex’]]
y=data[‘survived’]
#缺失年龄数据处理
x[“age”].fillna(x[“age”].mean(),inplace=True)

print(x)

#划分训练和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

进行处理(特征工程)特征-》类别-》one_hot编码

from sklearn.feature_extraction import DictVectorizer
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient=“records”))

print(x_train)

print(dict.get_feature_names())#输出编码后的特征
x_test = dict.fit_transform(x_test.to_dict(orient=“records”))
##########################################

# 用决策树进行预测

dec = DecisionTreeClassifier()

dec.fit(x_train, y_train)

# 预测准确率

print(“预测的准确率:”, dec.score(x_test, y_test))

# 导出决策树的结构

export_graphviz(dec, out_file=“./tree.dot”, feature_names=[‘年龄’, ‘pclass=1st’, ‘pclass=2nd’, ‘pclass=3rd’, ‘女性’, ‘男性’])

###########################################
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
param = {“n_estimators”: [120, 200, 300, 500, 800, 1200], “max_depth”: [5, 8, 15, 25, 30]}

网格搜索与交叉验证

gc = GridSearchCV(rf, param_grid=param, cv=2)
gc.fit(x_train, y_train)
print(“准确率:”, gc.score(x_test, y_test))
print(“查看选择的参数模型:”, gc.best_params_)
return None

if name == “__main__”:
dieornot()

【集成学习】随机森林

在这里插入图片描述

1.集成学习

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

2.随机森林

定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定

3.学习算法

在这里插入图片描述

4.代码实现

在这里插入图片描述

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
param = {“n_estimators”: [120, 200, 300, 500, 800, 1200], “max_depth”: [5, 8, 15, 25, 30]}

网格搜索与交叉验证

gc = GridSearchCV(rf, param_grid=param, cv=2)
gc.fit(x_train, y_train)
print(“准确率:”, gc.score(x_test, y_test))
print(“查看选择的参数模型:”, gc.best_params_)
return None

5.优点

决策树改进:

  • 减枝cart算法(决策树API中已经实现)
  • 随机森林

优点:

  • 在当前所有算法中,具有极好的准确率
  • 能够有效地运行在大数据集上
  • 能够处理具有高维特征的输入样本,而且不需要降维
  • 能够评估各个特征在分类问题上的重要性
  • 对于缺省值问题也能够获得很好得结果

【分类】逻辑回归——二分类

在这里插入图片描述
在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在这里插入图片描述
在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
[外链图片转存中…(img-fttSZtnT-1713355356927)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 19
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值