NumPy学习笔记(1),开发面试题库

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注Java)
img

正文

  • NumPy数组支持加号操作,结果是数组中每个元素相加:

在这里插入图片描述

  • 还可以做平方运算:

在这里插入图片描述

  • dot方法是点乘,既a的行与b的列,每个元素相乘后再相加,得到的值就是新矩阵的一个元素:

在这里插入图片描述

  • 除了用数组的dot做点乘,还可以将两个矩阵对象直接相乘,结果与dot结果一致:

在这里插入图片描述

  • 另外还要有逆矩阵、转置矩阵、矩阵转数组的成员变量需要注意:

在这里插入图片描述

爱因斯坦求和约定

  • 这里不细说爱因斯坦求和约定本身,只聊聊NumPy对该约定的支持,主要是einsum方法的使用:

  • 如下图,表达式i->,箭头左侧只有一个字母,表示输入是一维,箭头右侧空空如也,表示降到0维,也就是求和:

在这里插入图片描述

  • 三维矩阵降为二维矩阵:

在这里插入图片描述

  • 矩阵转置:

在这里插入图片描述

  • 还可以输入两个矩阵,做矩阵相乘,注意ij和jk相乘后,变为ik,j维度消失了:

在这里插入图片描述

  • 上图的ij,jk->ik改成ij,jk->,既结果是零维,矩阵相乘就变成了内积计算:

在这里插入图片描述

关于轴

  • 约减,即减少元素的数量,以sum方法为例,例如一个2行2列的二维数组,可以垂直约减,也就是将所有行的同一列相加,最后只剩下一行,也可以水平约减,也就是将所有列的同一行相加,最后只剩一列:

在这里插入图片描述

  • min、max、mean等函数也支持axis参数,做类似操作(mean是计算平均值)

数据访问

  • slice:分片参数

在这里插入图片描述

  • transpose:转置二维数组

在这里插入图片描述

  • ravel:展平多维数组,返回值是原值的视图,修改返回值会导致原值被改

在这里插入图片描述

  • flatten:展平多维数组,返回值是新的内存对象,修改返回值不会影响原值

在这里插入图片描述

广播

  • NumPy的广播,也叫张量自动扩张,在两个数组实施运算的时候,如果两个数组形状不同,可以扩充较小数组来匹配较大数组的形状

  • 一维数组与单个数字相加的时候,单个数字会被扩充为数组,值就是它自己:

在这里插入图片描述

  • 例如5_2数组与5_1数组相加,5*1的数组就会自动填充一行,内容是自己的第一行:

在这里插入图片描述

高级索引

  • 一维数组,方括号中的方括号,例如a[[3,3,2,1]],里面的数字代表要取的元素的索引:

在这里插入图片描述

  • 二维数组,方括号中的方括号,例如a[[3,3,2,1]],里面的数字代表要取的行数:

在这里插入图片描述

  • 二维数组,[:,[0,0]]表示所有行都访问,但是列只取两个:第0列和第0列,要注意的是第一个逗号,它左边是行信息,右边是列信息:

在这里插入图片描述

  • 找出符合条件的元素:

在这里插入图片描述

堆叠

  • 试想两本书可以怎么摆放? 水平方向平铺(水平堆叠hstack)、垂直方向平铺(垂直堆叠vstack)、两本书竖起来对齐(深度堆叠dstack),如下图所示,类似的,数组也可以按照这个思路去堆叠:

在这里插入图片描述

  • hstack、vstack、dstack这三个方法将两个数组向上图的两本书一样做堆叠,要注意的是入参是元组:

在这里插入图片描述

  • 这个图比较形象,二维数组在深度方向堆叠,形成了三维数组:

在这里插入图片描述

  • concatenate函数也能实现堆叠功能:

在这里插入图片描述

  • column_stack:将每个一维数组作为一列,水平堆叠

在这里插入图片描述

  • row_stack:将每个一维数组作为一行,垂直堆叠

在这里插入图片描述

分割

  • 与堆叠相对应的是分割:水平分割、垂直分割、深度分割

  • 先来看水平分割hsplit,就像切竖着西瓜,西瓜在水平方向被分割成几段:

在这里插入图片描述

  • 垂直分割vsplit就像横着切西瓜,结果是西瓜在垂直方向被分割成几段:

在这里插入图片描述

  • 以上的操作也可以共split方法辅以axis参数来实现:

在这里插入图片描述

  • 深度分割,会在深度的方向切下,假设原有两个二维数组组成的三维数组,每个都会被水平分割,这样就变成了四个二维数组,最终成了两个三维数组,分割的示意图如下:

在这里插入图片描述

  • 代码如下:

在这里插入图片描述

随机数

  • NumPy生成随机数的方法:

在这里插入图片描述

  • 至此,NumPy常用功能已经体验完毕,这只是对NumPy初步的了解,今后还需要更多的编码才能熟练使用;

你不孤单,欣宸原创一路相伴

  1. Java系列

  2. Spring系列

  3. Docker系列

  4. kubernetes系列

  5. 数据库+中间件系列

最后

针对以上面试题,小编已经把面试题+答案整理好了

最新大厂必问微服务面试题汇总:SpringCloud、Boot、Dubbo

最新大厂必问微服务面试题汇总:SpringCloud、Boot、Dubbo

最新大厂必问微服务面试题汇总:SpringCloud、Boot、Dubbo

面试专题

image

除了以上面试题+答案,小编同时还整理了微服务相关的实战文档也可以分享给大家学习

image

image

image

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

中…(img-RfanOwfL-1713643619199)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
[外链图片转存中…(img-NRwiAWVv-1713643619200)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值