2024年抖音那么大我想看美女,python一键爬取高颜值小姐姐(1)

本文介绍了如何使用Python脚本自动化获取手机屏幕截图,通过人脸识别技术筛选出18-30岁女性且颜值超过70的美女,同时讨论了视频下载和后续操作。还提供了学习Python的资源链接和学习路径.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“”"

获取手机截图的部分内容

:return:

“”"

截图

os.system(“adb shell /system/bin/screencap -p /sdcard/screenshot.jpg”)

os.system(“adb pull /sdcard/screenshot.jpg %s” % image_name)

打开图片

img = Image.open(image_name).convert(‘RGB’)

图片的原宽、高(1080*2160)

w, h = img.size

截取部分,去掉其头像、其他内容杂乱元素

img = img.crop((0, 0, 900, 1500))

img.thumbnail((int(w / 1.5), int(h / 1.5)))

保存到本地

img.save(image_name)

return image_name

现在可以使用百度提供的 API 获取到上面截图的人脸列表。

def parse_face_pic(pic_url, pic_type, access_token):

“”"

人脸识别

5秒之内

:param pic_url:

:param pic_type:

:param access_token:

:return:

“”"

url_fi = ‘https://aip.baidubce.com/rest/2.0/face/v3/detect?access_token=’ + access_token

调用identify_faces,获取人脸列表

json_faces = identify_faces(pic_url, pic_type, url_fi)

if not json_faces:

print(‘未识别到人脸’)

return None

else:

返回所有的人脸

return json_faces

从上述的人脸列表中筛选出性别为女,年龄为 18-30 岁之间,颜值超过 70 的小姐姐。

def analysis_face(face_list):

“”"

分析人脸,判断颜值是否达标

18-30之间,女,颜值大于80

:param face_list:识别的脸的列表

:return:

“”"

是否能找到高颜值的美女

find_belle = False

if face_list:

print(‘一共识别到%d张人脸,下面开始识别是否有美女~’ % len(face_list))

for face in face_list:

判断是男、女

if face[‘gender’][‘type’] == ‘female’:

age = face[‘age’]

beauty = face[‘beauty’]

if 18 <= age <= 30 and beauty >= 70:

print(‘颜值为:%d,及格,满足条件!’ % beauty)

find_belle = True

break

else:

print(‘颜值为:%d,不及格,继续~’ % beauty)

continue

else:

print(‘性别为男,继续~’)

continue

else:

print(‘图片中没有发现人脸.’)

return find_belle

由于视频是连续播放的,很难通过截取视频某一帧,判断视频有出现颜值高的小姐姐。

另外,大部分短视频播放时长为「10s+」,这里需要对每一个视频多次截图去做人脸识别,直到识别到颜值高的小姐姐。

一条视频最长的识别时间

RECOGNITE_TOTAL_TIME = 10

识别次数

recognite_count = 1

对当前视频截图去人脸识别

while True:

获取截图

print(‘开始第%d次截图’ % recognite_count)

截取屏幕有用的区域,过滤视频作者的头像、BGM作者的头像

screen_name = get_screen_shot_part_img(‘images/temp%d.jpg’ % recognite_count)

人脸识别

recognite_result = analysis_face(parse_face_pic(screen_name, TYPE_IMAGE_LOCAL, access_token))

recognite_count += 1

第n次识别结束后的时间

recognite_time_end = datetime.now()

这一条视频出现了颜值高的小姐姐

if recognite_result:

pass

else:

print(‘超时!!!这是一条没有吸引力的视频!’)

跳出里层循环

break

获取「分享」和「保存本地」两个按钮的坐标位置,依次利用 adb 执行点击操作即可下载视频到本地。

def save_video_met():

“”"

:return:

“”"

分享

os.system(“adb shell input tap 1000 1500”)

time.sleep(0.05)

保存到本地

os.system(“adb shell input tap 350 1700”)

另外,由于下载视频的过程是一个耗时操作,在下载进度对话框还未消失之前,需要做一个「模拟等待」的操作。

def wait_for_download_finished(poco):

“”"

从点击下载,到下载完全

:return:

“”"

element = Element()

while True:

由于是对话框,不能利用Element类来判断是否存在某个元素来准确处理

element_result = element.findElementByName(‘正在保存到本地’)

当前页面UI树元素信息

注意:保存的时候可能会获取元素异常,这里需要抛出,并终止循环

com.netease.open.libpoco.sdk.exceptions.NodeHasBeenRemovedException: Node was no longer alive when query attribute “visible”. Please re-select.

try:

ui_tree_content = json.dumps(poco.agent.hierarchy.dump(), indent=4).encode(‘utf-8’).decode(‘unicode_escape’)

except Exception as e:

print(e)

print(‘异常,按下载处理~’)

break

if ‘正在保存到本地’ in ui_tree_content:

print(‘还在下载中~’)

time.sleep(0.5)

continue

else:

print(‘下载完成~’)

break

在视频保存到本地之后,就可以模拟向上滑动的操作,跳到播放「下一条视频」。 循环上面的操作,即可筛选出所有颜值高的小姐姐,并保存到本地。

def play_next_video():

“”"

下一个视频

从下往上滑动

:return:

“”"

os.system(“adb shell input swipe 540 1300 540 500 100”)

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值