最后
如果觉得本文对你有帮助的话,不妨给我点个赞,关注一下吧!
4>:递归终止条件为path.size() == n
4.当我们求出所有的可行解,我们要对其做出处理,因为我们只是穷举了第一行的所有数据
所以我们的得补充完整个二维矩阵的样子,那么我们补充的原则是,2个同号下面都是“+”,2个异号下面都是“-”。
5.当得到一个完整的图形后我们要判断 0 和 1的个数时候相等 ,如果相等则计数,就是符合要求的
符号三角形
6:图示例
===================================================================
/**
思路:1.如果我们确立的第一行的符号是什么 ,那么我们就可以基本上确定我们的符号三角形是什么
因为当第一行确定的时候,那么接下来的行就是按照同号为’+’ ,异号为’-',来填写
2.在这里我们选择的解的空间是子集树(因为我们树每次都是’-‘,要么是’-')
3.具体步骤
1>:递归函数的参数
backtacking()
2>:输出的 结果
vector<vector > ans;用来存每次的可行解
vector path; 用来记录一次的可行解
3>:横向单层for循环 和 纵向的递归
横向的单层for循环为 0 和 1(这里我们用0和1代表’+‘和’-')
纵向的递归为我们的n层结构
4>:递归终止条件为path.size() == n
4.当我们求出所有的可行解,我们要对其做出处理,因为我们只是穷举了第一行的所有数据
所以我们的得补充完整个二维矩阵的样子,那么我们补充的原则是,2个同号下面都是“+”,2个异号下面都是“-”。
5.当得到一个完整的图形后我们要判断 0 和 1的个数时候相等 ,如果相等则计数,就是符合要求的
符号三角形
**/
#include<bits/stdc++.h>
using namespace std;
vector<vector > ans;
vector path;
int N;
void backtacking(){
if (path.size() == N) {
ans.push_back(path);
return;
}
for (int i = 0; i <= 1; i++) {
path.push_back(i);
backtacking();
path.pop_back();
}
}
int main(){
int count = 0;
cin >> N;
backtacking();
for (int i = 0; i < ans.size(); i++) {
int array[N][N];//将每一次的可行解建立一个二维矩阵
memset(array, -1, sizeof(array));//初始化为-1;
for (int j = 0; j < N; j++) {
array[0][j] = ans[i][j];
}
for (int k1 = 1; k1 < N; k1++) {
for (int k2 = 0; k2 < N - k1; k2++) {// N - k1 :因为这里是逐层递减的
if (array[k1-1][k2] == array[k1-1][k2+1]) { //上一行的符号相同
array[k1][k2] = 0; //这里我们用0和1代表’+‘和’-’
}else{
array[k1][k2] = 1;
}
}
}
int cnt1 = 0;
int cnt2 = 0;
for (int k3 = 0; k3 < N; k3++) {
for (int k4 = 0; k4 < N; k4++) {
if (array[k3][k4] == 0) {
cnt1++;
}
if (array[k3][k4] == 1){
cnt2++;
}
// cout << array[k3][k4] << ’ ';
}
// cout << endl;
}
if (cnt1 == cnt2) {
count++;
}
// cout << endl;
}
最后
2020年在匆匆忙忙慌慌乱乱中就这么度过了,我们迎来了新一年,互联网的发展如此之快,技术日新月异,更新迭代成为了这个时代的代名词,坚持下来的技术体系会越来越健壮,JVM作为如今是跳槽大厂必备的技能,如果你还没掌握,更别提之后更新的新技术了。
更多JVM面试整理:
qVVU-1715800150953)]
更多JVM面试整理:
[外链图片转存中…(img-iBIakJg6-1715800150954)]