pip install ecos
pip install osqp
再:
pip install cvxpy
完整代码如下:
coding=gbk
“”"
作者:川川
@时间 : 2022/1/30 0:35
群:428335755
“”"
import cvxpy as cp
from numpy import array
c = array([40, 90]) # 定义目标向量
a = array([[9, 7], [-7, -20]]) # 定义约束矩阵
b = array([56, -70]) # 定义约束条件的右边向量
x = cp.Variable(2, integer=True) # 定义两个整数决策变量
obj = cp.Minimize(c * x) # 构造目标函数
cons = [a * x <= b, x >= 0] # 构造约束条件
prob = cp.Problem(obj, cons) # 构建问题模型
prob.solve(solver=‘GLPK_MI’, verbose=True) # 求解问题
print(“最优值为:”, prob.value)
print(“最优解为:\n”, x.value)
运行结果如下:
由于注释很详细,我就没啥好说的了,如果你有不懂,可以评论区留言,或者加我联系方式问我。
模块安装:
pip install scipy
首先要转化为标准的式:
求解标准式代码如下:
from scipy import optimize
import numpy as np
求解函数
res = optimize.linprog(c, A, b, Aeq, beq, LB, UB, X0, OPTIONS)
目标函数最小值
print(res.fun)
最优解
print(res.x)
标准形式是<=,如果是>=,则在两边加上符号-。
举个例子如下:
求解代码为:
from scipy import optimize
import numpy as np
确定c,A,b,Aeq,beq
c = np.array([2, 3, -5])
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
