利用python处理pdf文本,帮我省下不少钱(1)

创建一个PDF资源管理器对象来存储共赏资源

rsrcmgr=PDFResourceManager()

设定参数进行分析

laparams=LAParams()

创建一个PDF设备对象

device=PDFDevice(rsrcmgr)

device=PDFPageAggregator(rsrcmgr,laparams=laparams)

创建一个PDF解释器对象

interpreter=PDFPageInterpreter(rsrcmgr,device)

处理每一页

pageindex = []

i = 0

pattern = re.compile(“collinear”)

for page in PDFPage.create_pages(document):

interpreter.process_page(page)

# 接受该页面的LTPage对象

layout=device.get_result() # return text image line curve

for x in layout:

if isinstance(x,LTText):

if pattern.search(x.get_text()):

pageindex.append(i)

i +=1

pdf_output = PdfFileWriter()

pdf_input = PdfFileReader(fp)

获取 pdf 共用多少页

for j in pageindex:

pdf_output.addPage(pdf_input.getPage(j))

final_path =os.path.join(r"C:\Users\tc\Desktop\final.pdf")

with open(final_path,“wb”) as f:

pdf_output.write(f)

fp.close()

好吧,到此结束???很多人会说,这些有什么意思,我随便点击一下鼠标就完事了?

----------------------------------垃圾分割线-------------------------------------------

别急,以上仅仅作为演示,干货在下面

-----------干货1-------------

技术:文章的封面是经过笔者仔细研究pypdfminer之后做出的图,理清了该库的主要逻辑。

----------干货2---------------

场景:A君为证券公司IPO小兵,近来在研究[共同实际控制人]问题,然而,这问题并不常见,通过网络关键搜索-即使派上了全文搜索以及牛逼哄哄的google-以及肉眼式的轰炸,仅仅找到了几个老旧的案例。这显然不是A君要的东西,对此他苦恼不堪。难道就没有捷径?

有的,不过,捷径通常掌握在思考者手里!

我们来思考刚刚提到的窘境

问题:搜寻共同实际控制人案例

问题的根本解决之路:从众多IPO公司招股书中查找

手段:”人生苦胆,我学python“

思路:

1,利用爬虫下载证监会招股说明书–PDF格式文件

2,利用pdfminer解析文本,获取含有【共同实际控制人】招股书公司名字

PART ONE

以是下载证监会反馈意见scrapy项目的主要spider代码:

-- coding: utf-8 --

import scrapy

import os

import urllib.request

from scrapy.selector import Selector

from .tools import alreay_exit,create_worddoc,get_para

from .tools import get_start_urls

class YxplSpider(scrapy.Spider):

name = ‘yxpl’

allowed_domains = [‘http://www.csrc.gov.cn’]

start_urls = get_start_urls()

exit_files = alreay_exit()

def parse_page(self,response):

final_dir =r"C:\Users\tc\PycharmProjects\yxpl\files"

item = SeoItem()

pre = “/”.join(response.url.split(“/”)[:-1])

title = response.xpath(“//head/title/text()”).extract()[0]

item[“title”] = title

#to get the pdf url

urls = response.xpath(‘//div[@class=“content”]/a/@href’).extract()

if len(urls) > 0:

for j in urls:

final_url = pre + j[1:] #最终网址

if item[“title”] not in self.exit_files:

try:

item[“content”] =urllib.request.urlopen(final_url).read()

file = open(os.path.join(final_dir, item[“title”] + “.pdf”), mode=“wb”)

file.write(item[“content”])

file.close()

except urllib.request.HTTPError:

print(“Error with HTTPErro” + item[“title”])

else:

print(title)

return item

def parse(self, response):

pre = r"http://www.csrc.gov.cn/pub/newsite/fxjgb/zrzfkyj/"

urls = response.xpath(‘//ul[@id=“myul”]/li/a/@href’).extract()

for i in urls:

new_url = “http://www.csrc.gov.cn/pub/” + “/”.join(i.split(“/”)[3:]

yield scrapy.Request(new_url,callback=self.parse_page,dont_filter=True)

PART TWO

2,返回含有关键子的文件名

对于下载好的PDF,仅仅只需要打开文件并对比关键字即可。由于过程简单,这里就不展示代码了。(实际上并不是我不愿意展示,而是因为运行速度太慢了!,一个400页的PDF大概需要一分多钟才能运行完毕,下载的文件有1500份,最少需要15个小时,so,python库确实 慢!慢!慢!)

含有【共同实际控制人】招股书名称截图

结语:对于PDF的操作介绍就到此结束。本文仅仅作为一种运用库展示代码编写过程,具体技术还需要有兴趣的朋友自己专研。

---------------ps-------------------

好吧,我还是透露在项目中发现的一个pycharm的一个重要功能–类的层级关系图,并将它与官方网站的模型图进行对比。

pycharm 层级图

官网 层级图

提示:层级关系图,可以比较快的把握库的层次关系,有利于摸清库的对象之间的关系

pdfminer的优势和劣势

优势

  • 提供页面上对象最底层的详细信息,使用者可以灵活使用这些信息,做进一步的加工

劣势

  • 运行速度慢

  • 无高阶api,用于特定场景,例如提取表格

  • 只能是文本类型的pdf,扫描版的pdf无效

其他pdf解析库

  • pdfplumber

基于pdfminer,用于提取表格信息

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)

g.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)

img
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值