- 博客(977)
- 收藏
- 关注
原创 RAG知识库搭建:手把手教你从零搭建自己的知识库
Word2Vec是一种用于处理自然语言处理的模型,它是在2013年由Google的研究员Mikolov等人首次提出的。Word2Vec通过训练海量的文本数据,能够将每个单词转换为一个具有一定维度的向量。这个向量就可以代表这个单词的语义。因为这个向量是在大量语境中学到的,所以这个向量能很好的表达这个单词的语义。Word2Vec包括Skip-Gram和CBOW两种模型,主要是通过优化模型计算词与词之间的关系,从而获得词的向量表示。Skip-Gram模型是通过一个词预测其上下文。
2025-05-06 16:52:42
590
原创 AI 时代之下,如何构建企业专属的智能知识库?
想象一个由人工智能管理的强大数据库,它不仅存储信息,还能理解、分析和运用这些信息。这就是AI知识库——一个能够自我学习、不断进化的智能系统。
2025-05-06 16:34:35
539
原创 【AI大模型】一文带你速通RAG、知识库和LLM!
定制知识库是指一系列紧密关联且始终保持更新的知识集合,它构成了 RAG 的核心基础。这个知识库可以表现为一个结构化的数据库形态(比如:MySQL),也可以表现为一套非结构化的文档体系(比如:文件、图图片、音频、视频等),甚至可能是两者兼具的综合形式。
2025-05-06 15:27:14
494
原创 一文带你速通RAG、知识库和LLM!
定制知识库是指一系列紧密关联且始终保持更新的知识集合,它构成了 RAG 的核心基础。这个知识库可以表现为一个结构化的数据库形态(比如:MySQL),也可以表现为一套非结构化的文档体系(比如:文件、图图片、音频、视频等),甚至可能是两者兼具的综合形式。
2025-04-28 17:06:09
1012
原创 2025大模型面试八股(含100道答案)收藏这一篇就够了!
最近秋招正在如火如荼地进行中,看到很多人的简历上都包含大模型相关的工作,各家大厂和初创都很舍得给钱,动辄百万年包也变得不再稀奇。前排提示,文末有大模型AGI-CSDN独家资料包哦!因此在大模型纵横的这个时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。本文总结了100道大模型算法岗常见的面试题(含答案),点击下方领取完整版:一、基础篇1、目前主流的开源模型体系有哪些?Transformer体系:由Google提出的Transformer 模型及其变体,如BERT、GPT 等。PyTo
2025-04-28 16:52:58
707
原创 AI大模型面试终极指南:答案揭晓,助你一臂之力!
AI 大模型技术经过2024年的狂飙,2025年必将迎来应用的落地,对 IT 同学来讲,这里蕴含着大量的技术机会,越来越多的企业开始招聘 AI 大模型岗位。本文梳理了 AI 大模型开发技术的面试之道,从等不同知识维度,试图找到一个共同的面试速成模式,希望对 IT 同学有所助益。
2025-04-28 16:31:38
784
原创 【2025年超全汇总】大模型常见面试题及详细答案解析
注意力机制是一种模拟人类注意力分配过程的模型,它能够在处理大量信息时,选择性地关注对任务更重要的信息,忽略无关信息。在自然语言处理中,注意力机制常用于机器翻译、文本摘要、问答系统等任务中,帮助模型捕捉输入序列中的关键信息。在计算机视觉中,注意力机制也用于图像识别、目标检测等任务,使模型能够关注图像中的关键区域。
2025-04-28 15:59:50
877
原创 大语言模型私有化部署和个性化调优的技术实践
本文介绍如何在不依赖任何三方服务的情况下,私有化部署和使用大语言模型,以及如何以较低成本让大语言模型使用自己的数据来产生个性化输出。
2025-04-28 15:42:41
886
原创 【玩转 GPU】本地私有化部署大模型--chatGLM
本文主要介绍ChatGLM-6B 的本地部署,提供更保姆级别的教程,让完全不懂技术的同学,也能在本地私有化部署大模型~在19年曾经尝试过使用GPT2进行代码补全,当时就被大模型效果惊艳到啊,只是没想到短短3年多,大模型效果提升这么快。学不完,根本学不完…大模型实在太火了,终于还是忍不住对它下手。今天介绍如何在本地部署大模型尝鲜,后面有时间会持续出大模型技术原理篇。大语言模型(Large Language Model),是一种人工智能模型,旨在理解和生成人类语言。
2025-04-27 14:49:21
544
原创 AI 入门,从零搭建完整 AI 开发环境,并写出第一个 AI 应用
在本文中,我们从零开始,一步步搭建了一个完整的AI开发环境,并创建了一个简单的AI应用。您学习了如何安装Python、Anaconda、TensorFlow,以及如何使用Jupyter Notebook进行开发。通过这个简单的手写数字识别应用,您不仅学习了AI的基本概念,还亲身体验了AI的应用。AI是一个广阔而充满机遇的领域,希望这个教程能够激发您继续深入学习和探索AI的兴趣。
2025-04-27 14:28:52
1101
原创 一文读懂大模型显存需求:从0.5B到70B,你的显卡够用吗?
大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。如果你是零基础小白,想快速入门大模型是可以考虑的。
2025-04-27 14:13:04
905
原创 最全面的大模型私有化+精调:面向垂直行业与特定场景之需
大模型私有化(Model Private Deployment)指的是将预训练的大型人工智能模型(如GPT、BERT等)部署到企业自己的硬件环境或私有云平台上。与公有云服务或模型即服务(Model-as-a-Service)相比,私有化部署能够给企业带来更高级别的数据安全性和自主控制能力。对数据隐私和安全要求高、需要自主控制AI模型运行环境的企业而言,或者在特定地理位置因法律法规限制不能使用公有云服务的情况下,这种需求是确实存在的。
2025-04-27 13:50:28
529
原创 大模型微调技术有哪些?我敢说这是大模型微调最全总结!
大模型微调技术通常指的是在大型预训练模型的基础上,通过少量的参数调整来适应特定任务或领域的技术。这是大型模型微调中最常见的技术。在这种方法中,预训练模型的参数会根据特定任务进行调整。这通常涉及到在模型的顶部添加一个新的输出层,并针对新任务对模型进行训练。在这种方法中,预训练模型的底层被用作特征提取器,其顶层被替换或修改以适应新任务。底层模型的参数在微调过程中保持不变。在微调过程中,可以冻结预训练模型的部分层,只对模型的某些层进行训练。这有助于减少过拟合,并保持模型在原始任务上学到的知识。
2025-04-26 09:30:00
646
原创 一文了解什么是大模型?到底大模型有什么用呢?
这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。
2025-04-26 09:00:00
772
原创 大模型私有化与精细调优,满足垂直行业与特定场景的定制化需求
大模型私有化(Model Private Deployment)指的是将预训练的大型人工智能模型(如GPT、BERT等)部署到企业自己的硬件环境或私有云平台上。与公有云服务或模型即服务(Model-as-a-Service)相比,私有化部署能够给企业带来更高级别的数据安全性和自主控制能力。对数据隐私和安全要求高、需要自主控制AI模型运行环境的企业而言,或者在特定地理位置因法律法规限制不能使用公有云服务的情况下,这种需求是确实存在的。
2025-04-25 15:37:01
719
原创 大模型本地部署,详细教程,私有化部署体验 Dify!
Dify是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。前排提示,文末有大模型AGI-CSDN独家资料包哦!AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用。
2025-04-25 15:17:17
886
原创 一文细数大模型 RAG 十二大痛点及解决方案
暑期实习基本结束了,校招即将开启。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。检索增强式生成(RAG)是一种使用检索提升语言模型的技术。具体来说,就是在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程。这种技术能极大提升内容的准确性和相关性,并能有效缓解幻觉问题,提高知识更新的速度,并增强内容生成的可追溯性。
2025-04-25 14:55:48
956
原创 大模型RAG实战:RAG原理、应用与系统构建
大模型爆火后的RAG系统发展,大体可以将其分为3个阶段,初级、高级、超级。初级阶段更多的是搭建起系统的pipeline;高级阶段是在召回生成测修修补补,根据badcase反推流程上的优化技巧;超级对应了从Agentic RAG、RAG不存在了、多模态RAG、结构化RAG、GraphRAG、MemoryRAG等技术飞速发展的阶段。
2025-04-25 14:22:26
1136
原创 大模型rag技术,什么是RAG?大模型入门到精通,收藏这篇就够了
RAG(Retrieval-Augmented Generation)即检索增强生成,为大模型提供了从特定数据源检索到的信息,以此来修正和补充生成的答案。
2025-04-24 16:11:02
988
原创 2025最新版:阿里内网大模型面试题首次公开,别流传出去了
随着人工智能技术的迅猛发展,等领域的岗位越来越受欢迎,而对于大型模型技术的掌握成为了这些岗位的标配。但目前公开的大模型资源还是很少很少,面试真题就更不用多说了。为了让大家能够应对大模型面试,整理了这份大模型面试真题及答案,对新手如何入门算法岗位、备战面试以及面试常见考点的详尽指导。内容太多不一一列举。
2025-04-24 15:42:58
770
原创 600道大模型面试题,看完它手撕面试官,非常详细!
大模型面试题及答案什么是大模型?答:大模型通常指的是那些拥有大量参数(例如数十亿甚至更多)的人工智能模型,这些模型经过大规模数据集的训练,能够处理复杂的任务。大模型的一个重要特点是它们往往能够捕捉到数据中的复杂模式,并且在许多不同的任务上展现出强大的泛化能力。这些模型包括但不限于Transformer架构的变体,如BERT、GPT-3等。大模型的主要优势是什么?
2025-04-24 15:28:24
872
原创 2025年最全汇总:国内24家大模型面试经验分享
2024年三月前后,大模型突然国内火了起来,笔者就面了一些公司,有大厂有初创。最近挺多朋友聊大模型相关的内容,对面试也感兴趣,想这里综合写一下,也希望能和各位同行交流下。因为有一段时间了(最早面的半年了),所以大部分细节记不清了,列表顺序大概齐按面试时间排的。前排提示,文末有大模型AGI-CSDN独家资料包哦!后边会大体总结下面试的经验感悟,以及我认为要注重的内容,一家之言仅供参考。这段时间面试了很多家,也学到了超级多东西。
2025-04-24 15:15:31
984
原创 基于大模型的知识助手:7家头部企业“大模型+知识管理”落地实践
知识,作为企业最宝贵的资产之一,其有效管理和应用成为企业提升竞争力的关键。然而,传统的知识管理系统往往存在信息孤岛、检索效率低下、知识更新滞后等问题,难以满足企业快速响应市场变化的需求。基于大模型的知识助手应运而生,它以其强大的语义理解和数据处理能力,正在成为企业知识管理的最佳解决路径,有效打通了企业知识应用的“最后一公里”,为企业知识管理带来了革命性的变革。基于大模型的知识助手不仅能够自动整合企业内外部的海量信息,构建全面、精准的知识图谱,还能够通过自然语言查询,实现一键触达精准答案。
2025-04-18 16:25:37
1016
原创 企业构建AI大模型应用的步骤流程与关键问题解析
构建企业级AI大模型驱动的应用系统是一项跨越技术与业务边界的综合性任务,它不仅考验着企业在业务领域知识的深度,也挑战着企业基于AI大模型构建应用的技术高度。这一过程要求业务专家与AI大模型专家紧密协作,共同确保通过AI大模型的赋能,实现业务价值的倍增效应。基于实践经验总结,可以系统化地将AI大模型应用的构建流程划分为五个核心步骤:1)需求场景的精确定义、2)大模型的科学选型、3)大模型性能效果的强化调优、4)大模型的部署与运行维护,以及5)AI应用的无缝集成。
2025-04-18 16:23:56
1117
原创 【大模型+知识图谱】工业领域落地的4大应用场景!
对于 AI 技术,大家热聊的话题超 90% 都是围绕大模型,而知识图谱则是上一波 AI 浪潮中比较热门的技术。今天特邀行业专家,探讨关于大模型和知识图谱在工业领域的一些落地实践。主要分为四个部分展开:大模型和知识图谱的关系、大模型+知识图谱双擎的原理、大模型+知识图谱双擎的工业应用场景、大模型+知识图谱双擎在工业领域的成功案例。大模型和知识图谱到底是什么呢?人类有两种主要的思维模式,一种是快速而直觉的,另一种是缓慢而深思熟虑的,这种说法起源于并广泛存在于古老的哲学和心理学著作中。
2025-04-18 16:20:00
919
原创 大模型技术赋能企业:七大落地场景深度解析
在当今数字化时代,人工智能(AI)技术,特别是大模型技术,正在逐步改变企业的运营模式和业务流程。大模型技术以其强大的语言理解、文本生成、函数调用和写代码等能力,为企业带来了前所未有的创新和价值。(1)对话助手对话助手是大模型技术最基础也是最广泛的应用形态。基于知识库数据源和API查询,对话助手能够实时回答用户问题,提供高效的信息传递。例如,某一乘用车通过搭建基于AI大模型的汽车在线问答平台,实现了对非结构化文档(如PDF、Word等)的智能知识交互,提升了员工工作效率和学习能力。
2025-04-18 16:18:04
666
原创 制造业是AI大模型应用的主战场
数字原生企业的涌现是产业升级和经济繁荣的重要标志。德国、日本与美国制造业差距的扩大,在微观上主要表现为制造业领域缺乏一批有竞争力的数字原生企业。德国“工业4.0”目标并没有实现,与预期差距较大,中小企业数字化进展缓慢,研究表明只有21%的中小企业在生产中使用了数字技术,也没有成长出一批数字时代有竞争力的中小企业。日本的情况与德国类似,日本经历了“失去的二十年”,同样没有培养出一批数字原生企业。
2025-04-18 16:16:39
981
原创 什么是大模型?一图全面了解大模型,附国内外知名大模型及240余家大模型清单!
AI大模型是“大数据+大算力+强算法”结合的产物,是一种能够利用大数据和神经网络来模拟人类思维和创造力的人工智能算法。它利用海量的数据和深度学习技术来理解、生成和预测新内容,通常情况下有数百亿乃至数万亿个参数,可以在不同的领域和任务中表现出智能。
2025-04-18 16:14:18
615
原创 如何让企业大模型变身自家数据的“百科全书”?
大数据和大模型为企业提供了前所未有的数据处理能力和洞察力。通过有效的数据架构设计、大模型集成、实时与批量数据处理以及数据同步,企业可以更好地利用其数据资源,提升运营效率,并在竞争激烈的市场中保持领先。Apache SeaTunnel和WhaleStudio作为企业数据高速公路,帮助快速对接企业内部数据,实现数据的向量化和“百科全书化”。
2025-04-18 16:08:22
770
原创 API调用大模型如此方便,为何企业还要私有化部署大模型?
直接通过网页API调用大模型确实方便快捷,尤其对于那些追求效率、希望快速集成AI功能的项目来说,云端服务是个不错的选择。但为啥有些企业和个人还琢磨着要把这些大模型搬到自家服务器上,搞个本地部署呢?想象一下,如果你的公司处理的是客户敏感信息或者商业机密,直接把数据上传到云端处理,总有点担心信息外泄吧。本地部署就能让数据在内部流转,相当于给敏感信息加了个保险箱。从国家层面来说,为什么国外ChatGPT这么厉害了,国家还要花大力气搞国产大模型?因为大模型技术的飞速发展,会让其成为了。
2025-04-18 16:04:03
767
原创 每一个企业,都值得拥有自己专属的AI大模型
大模型技术的发展日新月异,模型参数规模越做越大,能处理的文本长度、多模态融合等方面也在快速演进。然而,如何将这些大模型的潜力在企业中落地应用,仍然是业界面临的一大挑战。企业业务场景千差万别,大模型必须经过针对性的训练和微调,才能有效适应不同企业的需求和业务流程。面对这些挑战,业界一直在探索各种解决方案,但尚未形成统一的最佳实践。在这一背景下,星环科技作为行业的先行者,积极探索大模型在企业中的应用路径。
2025-04-18 16:02:39
1097
原创 AI大模型应用落地的痛点与策略分析
AI大模型目前正在成为企业转型升级的关键,同时,政策牵引、技术突破和转型需求等因素也驱动B端企业逐步推进了对于AI大模型的深度应用。AIGC时代的第一波浪潮是大模型的预训练和训练集群规模的不断扩大,紧随其后,第二波浪潮接踵而至,当前和未来将更加聚焦AI大模型的应用落地。算力、网络等基础设施构筑起高效的计算和存储能力,并基于自然语言处理、算法与模型优化等底层技术保障大模型稳定运行,在此基础上,通用大模型能力逐步完善,并基于专业领域数据涌现出垂直行业和细分场景大模型。
2025-04-18 16:01:11
998
原创 如何构建企业级的AI大模型?只看这篇就够了
模型评估模型评估⼀直以来都是⼈⼯智能领域的重要议题。从机器学习,到深度学习,再到现在的⽣成式 AI,不同阶段的模型评估指标也呈现不同的特点。在机器学习和深度学习阶段,模型的主要任务是分类(分类模型)和预测(回归模型),模型结果是否正确是明确的。分类模型的主要评估指标是准确率、召回率、精确率、F1 等等。但是到了⽣成式 AI 阶段,基于通⽤⼤型基础模型,模型的主要任务变成了⽂本⽣成和图像⽣成等。⽣成的⽂本与图⽚是否“正确”具有强烈的主观性,计算维度也与之前不同。
2025-04-18 15:58:54
1064
原创 思考大模型如何为企业赋能,并提升竞争力
本文主要探讨了大模型的智能化方面底层机制和未来发展方向,重点介绍了大模型在不同领域中的机遇和应用场景。同时,本文还对应用大模型的平台构建、技术实现、安全合规等方面进行了系统的介绍。在后续的文章中,将会进一步细说领域大模型的落地实践,让大家更加深入地了解这一领域的发展。
2025-04-18 15:56:27
944
原创 企业如何建立自己的专属大模型?
向量数据库因为AI大模型最近很火。向量数据库是一种专门用于存储、 管理、查询、检索向量的数据库,主要应用于人工智能、机器学习、数据挖掘等领域。向量是一组数值,可以表示一个点在多维空间中的位置。简单理解就是在AI的世界中,处理的所有数据都是向量的形式,比如“我爱吃荔枝”,在大模型处理的过程中,计算机会转化为向量的形式:我:[0.1, 0.3, -0.2, …, -0.1]喜欢:[-0.3, 0.5, 0.2, …, 0.4]吃:[0.4, -0.1, 0.2, …, -0.3]
2025-04-18 15:51:45
661
原创 企业该如何巧妙落地大模型?这里有10大指南
挑战与机会并存,挑战越大,机会越大,收益也就越大。作为数智时代的经营者,千万不要顽固不化,更不要畏首畏尾,因噎废食,而要积极拥抱变化,快速重塑认知,持续优化思路,带着你的团队,采用“
2025-04-18 15:48:55
719
原创 企业大模型微调项目落地实施中有哪些关键岗位角色?
随着人工智能技术的快速发展,大型企业纷纷投入到大型模型(如大语言模型、多模态大模型等)的研发与应用中。大模型因其强大的理解和生成能力,在各个领域都有着广泛的应用前景。然而,要将大模型真正应用于实际场景,为企业带来价值,就需要进行微调项目,这是一个涉及技术研发、数据处理、模型训练与优化等多个环节的复杂过程。企业在实施大模型微调项目时,往往面临着一系列挑战,如技术选型、团队组建、职责分工不明确等问题。
2025-04-18 15:47:07
601
原创 LangChain技术解密:构建大模型应用的全景指南
LangChain是一个专为大语言模型(LLM)设计的开源框架,旨在简化复杂应用的开发流程。它提供了一套完善的工具和API,帮助开发者更轻松地集成和管理大语言模型。LangChain的设计初衷是通过模块化和可扩展的方式,使得开发者可以根据具体需求自由组合和扩展功能,从而更高效地实现应用目标。
2025-04-12 17:06:24
904
原创 一文彻底理解大模型 Agent 智能体原理和案例
大模型 Agent,作为一种人工智能体,是具备环境感知能力、自主理解、决策制定及执行行动能力的智能实体。简而言之,它是构建于大模型之上的计算机程序,能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标的智能存在。
2025-04-12 17:04:42
692
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人