自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1178)
  • 收藏
  • 关注

原创 小白也能懂的AI智能体记忆系统:形式-功能-动态三维框架详解

本文系统综述了AI智能体记忆系统研究进展,提出"形式-功能-动态"三维分类框架。文章探讨记忆作为智能体核心能力的重要性,详细分析三种记忆形式(令牌级、参数化、潜在记忆)、三类功能角色(事实、经验、工作记忆)及其动态演化机制,为智能体研究提供理论基础,并讨论未来挑战与应用前景。

2025-12-31 18:24:38 910

原创 AI Agent工程现状报告,企业部署数据与学习指南,建议收藏

AI Agent工程现状报告显示,超57%企业已将Agent投产,客服与数据分析为主要应用场景。质量是最大挑战,可观测性和评估体系成为标配。多模型策略主导市场,编码Agent领跑日常应用。Agent工程正从新兴概念发展为成熟学科,企业关注点从成本转向让Agent运行良好。

2025-12-31 18:23:29 576

原创 多模态推荐系统实战:淘宝闪购团队带你从零学习大模型在推荐系统中的应用

本文详细介绍了推荐系统从传统ID特征向多模态内容特征的演进历程,梳理了多模态表征技术的发展脉络,并分享了淘宝闪购首页店铺推荐场景下的多模态推荐系统实践。文章重点阐述了三阶段训练策略在解决多模态特征与传统ID特征融合问题上的有效性,最后对生成式推荐的前沿探索进行了展望。

2025-12-23 15:55:47 975

原创 Agent驱动的工作流开发新范式:颠覆传统编程,效率提升10倍

本文介绍了一种基于Agent驱动的工作流开发新模式,颠覆传统"先建模,后执行"的思维,转向"先定义目标,后自组织执行"。该模式具有参数自组织、上下文自感知、无需固定流程编排等优势,能大幅简化开发流程,降低维护成本。通过将Agent作为底层框架而非节点,这种范式重塑了工作流开发,代表了未来软件开发的新方向。

2025-12-23 15:54:40 979

原创 大模型+RAG+Text2SQL:应急管理安全生产智能问答系统实战全流程

文章详细介绍了基于LlamaIndex框架构建的应急管理安全生产智能问答系统,采用Agent+RAG+Text2SQL技术架构。系统整合非结构化文档和结构化数据,通过混合查询架构实现知识检索与数据库查询的智能切换,并包含句子拆分、自动质量评估和回退机制等功能。作者分享了数据整理、索引建立、查询引擎构建等关键步骤及实战经验,为开发类似智能问答系统提供了完整的技术路线和解决方案。

2025-12-23 15:53:22 881

原创 LangChain多智能体协作实战:从零构建研究-报告团队系统

本文详细介绍了如何使用LangChain构建多智能体协作系统,通过TeamState设计数据流转,利用LangGraph架构实现专业分工、动态循环和质量控制。文章从简单的研究员-报告员顺序协作入手,逐步引入协调员实现动态协作,提供了完整代码示例和调试技巧,帮助开发者掌握多智能体系统的核心设计思想和实现方法。

2025-12-23 15:52:05 657

原创 LLM智能体完全指南:从传统AI到通用智能助手的跨越

文章介绍了大语言模型智能体(LLM Agent)与传统智能体的本质区别。LLM Agent以语言为通用接口,具有通用化、语言驱动和推理能力强的特点,包含感知系统、大语言模型、规划系统等7个核心组件。文章还探讨了多智能体协作,对比了AutoGen和CrewAI两种框架的设计范式,指出LLM智能体代表了AI发展的重要方向,实现了从专用系统到通用助手的跨越。

2025-12-20 17:40:51 1108

原创 RAG与知识图谱技术深度解析:从多模态应用到ESG知识图谱构建

文章介绍两大技术主题:一是组合式多模态RAG技术的全面梳理,涵盖不同输入输出组合、核心流程和训练策略;二是OntoMetric方法,采用"结构感知分割+本体引导抽取+两阶段验证"思路,解决ESG知识图谱构建中的实体不一致、关系幻觉等问题。

2025-12-20 17:40:12 638

原创 大模型赋能终端:gemini-cli源码剖析与AI Agent构建指南

本文深度解析Google gemini-cli源码,揭示大语言模型如何重塑命令行终端成为AI协作界面。通过解构其Agent内核、ReAct工作流、工具调用与上下文管理等核心模块,探讨可复用架构设计、LLM动态调度范式及人机共创模式。文章为开发者构建终端Agent提供系统化参考,并展望了与操作系统集成、多智能体协作的未来发展方向。

2025-12-09 10:36:49 1145

原创 从LLM+工具循环到深度智能:Agents 2.0核心思想与LangChain实现,程序员必学收藏指南

深度Agent(Agents 2.0)通过四大支柱(规划、委派、持久记忆、人类在环)解决浅层Agent的状态短暂和上下文溢出问题,实现从"LLM+工具循环"到"深度智能"的范式迁移。LangChain的Deep Agents基于LangGraph提供有状态编排、检查点等能力,支持长周期复杂任务与可恢复执行,适用于研究、异步编码等场景,但需权衡子代理与记忆调用带来的成本。

2025-12-09 10:34:28 590

原创 大模型智能体(Agent)从入门到实践,小白也能学会的实战指南

本文全面介绍大语言模型驱动的智能体(Agent),包括定义、类型、工作原理和应用模式。通过构建智能旅行助手的实践案例,展示"感知-思考-行动-观察"循环机制及工具调用技术。探讨智能体作为开发者工具和自主协作者两种模式,对比Workflow与Agent差异。为读者提供从理论到实践的完整入门路径。

2025-12-05 18:41:07 1026

原创 AI Agent框架全解析:8大主流平台对比,助小白和程序员快速入门大模型

本文全面对比分析了8个主流AI Agent框架,包括LangChain、LlamaIndex、Dify、FastGPT等。从技术栈、开发门槛、核心优势到适用场景进行详细解析,并提供了按使用场景、团队能力和私有化需求进行选型的决策指南。无论你是零基础小白还是资深开发者,都能根据自身需求找到最适合的AI Agent解决方案,快速搭建大模型应用。

2025-12-05 18:39:59 838

原创 上下文工程:构建更高效AI智能体的核心技能

本文探讨上下文工程——提示工程的演进,关注如何有效筛选和管理AI智能体的上下文信息。LLM注意力预算有限,信息过载会导致性能下降。文章介绍了高效上下文的构成要素(系统提示、工具设计、示例选择)和长周期任务管理技术(压缩、结构化笔记、子智能体架构)。核心原则是用最少的高信号token,最大化达成目标的可能性,成为构建可靠高效AI智能体的必备技能。

2025-11-29 11:24:59 996

原创 大模型优化利器RAG:小白入门到企业应用全解析

RAG(检索增强生成)是优化大模型的方法,通过引用外部知识库提升输出质量。它包含检索(从知识库获取相关信息)、增强(整合查询与知识)和生成(输入LLM产生输出)三步骤。RAG具有提高准确性、降低成本、减少AI幻觉等优势,适用于企业知识管理、客服机器人和专业知识问答等场景,是让大模型更贴合企业实际需求的有效技术。

2025-11-29 11:15:14 901

原创 大模型Agent开发入门到精通:工作流、MCP协议与自主智能体

本文介绍了大模型Agent开发的核心概念与技术,包括通过提示词设计实现模型输出格式化,工作流与MCP协议使大模型能调用外部API,以及Dify、Coze等开发平台的应用。重点阐述了Agent相比工作流的自主性,其包含Profile、Memory、Planning和Action四大组件,能够主动思考并分解任务解决问题。文章旨在为开发专业知识问答智能助手提供技术基础,并预告下一章将介绍RAG技术的应用。

2025-11-28 14:34:04 413

原创 大模型RAG效果差?掌握这7种分块策略,让你的收藏夹不再吃灰

文章详解了RAG系统中七种分块策略,强调分块是影响效果的关键因素。建议从512 tokens搭配10-15%重叠率开始尝试,优先考虑递归分块和句子分块。正确选择分块策略能显著提升检索准确性和生成质量,是优化RAG系统的重要环节。

2025-11-28 14:32:55 386

原创 大模型微调新范式:LoRA与QLoRA技术详解,轻松掌握90%成本优化方案

本文详解大语言模型轻量化微调技术LoRA的核心原理:通过矩阵分解将大权重矩阵拆分为两个小矩阵,大幅减少可训练参数量。LoRA冻结原始权重仅优化低秩矩阵,QLoRA引入量化技术进一步降低内存占用。这种技术不仅减少计算资源需求,还实现了适配器概念的灵活应用,为不同下游任务提供高效解决方案,是当前大模型微调领域的重要技术突破。

2025-11-27 13:57:54 661

原创 从零开始学习LLM大模型:Java+AI架构转型指南,告别中年危机

本文介绍了尼恩架构团队的《LLM大模型学习圣经》内容体系,重点讲解了RAGFlow技术架构及其在企业级应用中的价值。通过多个成功案例展示了Java+AI架构学习对职业转型和薪资增长的助力,详细解析了RAGFlow的深度文档理解、智能分块策略和检索增强生成等核心技术,为程序员提供了架构转型的实用指南和学习路径。

2025-11-27 13:56:47 996

原创 大模型微调技术全解析:从LORA到QLORA,小白也能轻松掌握

文章系统介绍了11种大模型参数高效微调技术,包括前缀调优、提示调优、P-Tuning v2、LORA系列、QLORA、LongLORA等创新方法。这些技术通过冻结预训练模型参数,仅优化少量特定参数或向量,显著降低计算资源消耗,同时保持模型性能,为不同场景的大模型应用提供了多样化的高效解决方案。

2025-11-26 14:19:02 1191

原创 如何为 RAGFlow 添加新的数据源?

本指南面向希望为 RAGFlow 扩展数据源能力的社区开发者,旨在以专业、可复用的流程说明如何实现并接入新的 connector。RAGFlow 的 connector 框架深受 Onyx 开源项目启发,特此致谢。在实际使用中,除了从本地文件系统导入文件,RAGFlow 还需要从大量异构系统中获取数据。

2025-11-26 14:17:30 1092

原创 大模型时代,从“提示词工程“到“问题架构“:AI越强,你的价值越大!

随着大模型推理能力提升,传统提示词工程已失效。文章提出"问题架构"新思维,强调从拼凑词汇转向拆解逻辑,定义约束边界,培养结构化、算法和评估思维。AI越强大,越需要人类定义问题、设定边界、对结果负责。真正的价值不在于使用AI工具,而在于成为问题的定义者和结果的负责人,从"传话筒"进化为"架构师"。

2025-11-25 15:37:08 585

原创 大模型上下文工程实践:从RAG到记忆架构,一篇教程全掌握,值得收藏

本文深入探讨上下文工程这一大模型应用关键技术,重点解析检索增强生成(RAG)的工作原理、核心优势及高级模式,详细介绍三层记忆架构(短期、长期、暂存区)和记忆增强智能体的设计与应用。文章分析了上下文工程面临的污染、干扰、混淆和冲突等问题,并提供了相应的解决方案,帮助开发者构建能处理长对话、调用多源数据的高效能AI系统。

2025-11-25 15:32:33 555

原创 从零搭建大模型环境实战:KTransformer安装与显卡兼容性避坑指南

作者分享使用KTransformer搭建大模型环境的完整经历,详细记录了硬件配置选择、Ubuntu系统安装、KTransformer部署及模型加载过程。重点分析了NVIDIA显卡架构兼容性问题,特别是20系显卡无法使用关键优化功能的困境,以及通过CPU推理性能不足的实际体验。文章为想要搭建大模型环境的开发者提供了详细步骤和避坑指南。

2025-11-24 17:49:05 1007

原创 大模型工具调用与智能体实现:从入门到精通

文章介绍了基于生成式大模型开发智能体的两种工具调用方法:一是通过特别设计提示词引导模型输出结构化指令;二是利用大模型原生的函数调用机制。详细对比了两种方法的适用场景、稳定性、开发成本等差异,并提供了抽象适配器、服务端校验、可观测性等最佳实践。开发者可根据具体需求选择适合的方法,实现大模型与外部工具的有机结合,构建具备推理分析能力的智能体应用。

2025-11-24 17:47:47 1245 1

原创 一文搞懂大模型微调:PT/SFT/DPO技术详解与应用场景

文章详解了大模型微调的三种技术:PT、SFT和DPO,包括它们的工作原理、数据要求和适用场景。文章指出微调成本高、技术门槛高,建议优先考虑提示词工程和RAG等替代方案。只有在特定领域专业知识、特殊输出格式、私有数据深度理解和高性能要求时才考虑微调,并推荐了适合不同技术水平的平台。

2025-11-22 18:14:51 1016

原创 Hugging Face生态全解析:大模型开发者的完整工具链教程

Hugging Face是AI开发的核心生态系统,包含Hub平台和工具链库。本文详解了Transformers库中的模型加载(AutoModel、AutoModelForXXX)、Tokenizer使用(文本处理与编码)以及Datasets库(数据加载、预处理与保存)。通过这些工具,开发者可高效实现从数据处理到模型训练的全流程,是入门大模型开发的必备知识。

2025-11-22 18:13:52 1054

原创 知识图谱赋能大模型的数据分析实践,收藏级技术详解

知识图谱通过结构化表达实体与关系,构建从数据到知识的桥梁,与智能数据分析工具结合,实现深层次关联分析和知识驱动决策。文章介绍了知识图谱的基本构成与构建技术,详细阐述了动态关联和归因分析等智能分析方法,以及从数据准备到决策反馈的完整决策支持系统框架。通过华为和清华大学等实际案例,展示了知识图谱赋能智能数据分析在提升效率、盘活数据资产方面的显著价值,为企业科学决策提供技术支撑。

2025-11-21 18:48:24 1031

原创 从零构建垂直领域RAG知识库:打造专属智能问答助手,让学习效率飞跃

文章介绍了如何从零构建垂直领域RAG知识库,以"智能菜谱问答助手"为例,详细讲解了数据理解、架构设计和工程化挑战。针对检索粒度矛盾、语义检索局限和用户意图模糊三大问题,提出了父子文档索引、混合检索和查询重写等解决方案。文章强调了亲手构建RAG系统的价值,包括白盒化调试能力、极致灵活性和技术迁移性,为开发者提供了打造专属智能问答助手的技术路径。

2025-11-21 18:47:25 1056

原创 大模型时代必备:企业级AI流量管理与调度平台架构解析

本文介绍了一家全球家电巨头如何构建企业级AI Agent流量管理和调度平台,以解决多模型、多租户、混合云环境下的流量分散、调度混乱问题。通过构建AI网关三层架构(接入层、治理层、调度层),实现了混合模型自动fallback、基于token的精细化限流限速,简化了大模型调用,实现了资源集中管理和服务稳定。AI网关正逐步演进为整个AI能力系统的调度核心,未来将承载更多AI原生能力。

2025-11-21 18:46:15 923

原创 企业大模型落地全攻略:从规划到运营的六个关键问题

文章详细介绍了大模型在企业落地的四个阶段和六个关键问题,包括规划准备中的方向确定和路径选择,实施落地中的场景挖掘、流程梳理和微调考量,以及运营迭代中的持续优化。强调大模型落地需业务、数据和技术三方面协同,通过敏捷迭代实现从外围到核心业务的逐步推进,最终赋能企业智能决策。

2025-11-20 11:51:41 1252

原创 AI技术科普:一文读懂大模型核心概念:AIGC/RAG/Agent/MCP

文章系统介绍了大模型技术演进脉络:从AIGC(单/多模态生成式AI)到解决实时性问题的RAG技术,再到赋予模型工具调用能力的Function Calling,以及实现任务闭环的智能体Agent,最后是统一工具接入标准的MCP协议。这些技术共同构建了大模型生态,推动AI从简单对话工具进化为能完成复杂任务的智能助手。

2025-11-20 11:50:25 806

原创 AI Agent“掉链子“解决方案:上下文工程五大核心策略,提升大模型性能必备指南

AI Agent因上下文窗口有限常出现"失忆"和混乱问题。上下文工程通过五种策略解决:Offload(写入文件系统)、Cache(缓存常用上下文)、Compress(压缩和总结)、Retrieve(按需加载)和Isolate(隔离上下文)。这些方法类似计算机内存管理,能有效提升AI性能和稳定性,是当前AI开发的核心技能。

2025-11-20 11:49:06 678

原创 SpringBoot集成LangChain4J:Java开发者必学的大模型实战指南

本文是《LangChain4J从基础到实战》系列开篇,详细介绍了如何在SpringBoot项目中集成LangChain4J。文章强调需要JDK 17+和SpringBoot 3.x+版本,详细讲解了依赖引入、配置文件设置及ChatModel的使用方法。通过简单示例展示了与大模型的对话功能,并指出LangChain4J的双层抽象层次使切换不同大模型变得简单易行。

2025-11-19 16:28:18 908

原创 MCP代码执行实战:构建高效AI代理,节省98.7%token消耗

本文介绍了使用MCP(模型上下文协议)进行代码执行如何解决AI代理中token消耗过多的问题。通过将工具表示为代码API而非直接调用,代理可按需加载工具、在数据到达模型前过滤处理,并执行复杂逻辑。这种方法显著降低token使用(节省98.7%),同时提供隐私保护、状态持久化和技能重用等优势,使AI代理能更高效地与大量工具系统交互。

2025-11-19 16:27:19 725

原创 Spring AI框架RAG开发指南:从入门到精通,掌握核心特性与最佳实践

本文详细介绍了基于Spring AI框架的RAG知识库应用开发,涵盖核心特性实现、最佳实践与调优技巧。重点讲解了ETL流程、向量存储配置、文档检索优化及查询增强方法,并探讨了混合检索策略、大模型幻觉问题及高级RAG架构。通过系统化学习,开发者可掌握从基础实现到高级优化的完整RAG开发技能,提升AI应用准确性和可靠性。

2025-11-19 16:26:14 915

原创 LangGraph大模型应用开发实战指南:从零构建智能聊天机器人

文章详细介绍了LangGraph框架,这是LangChain团队开发的开源AI应用架构工具,专为构建复杂生成式AI工作流而设计。通过对比其他框架,展示了LangGraph在持久执行、人机协作、记忆管理等方面的优势,并通过实例演示了如何从零开始构建具有工具使用能力和记忆功能的智能聊天机器人,为开发者提供了构建下一代AI应用的关键能力。

2025-11-17 13:49:48 1274

原创 RAG技术深度解析:为什么它是解决大模型幻觉与知识局限性的关键?

RAG(检索增强生成)技术通过实时检索外部数据增强大模型的事实性和时效性,解决其幻觉、知识更新慢和领域理解有限等缺陷。核心流程包括文档索引化处理、相似性检索和融合生成回答。文章通过医疗、工程、科研等领域的案例展示了大模型的专业局限性,并提供了完整的RAG实现代码,帮助开发者构建基于最新知识的专业问答系统,显著提升大模型在专业领域的应用准确性和可靠性。

2025-11-17 13:48:12 973

原创 AI Agent架构解析:五大核心要素协同机制与MCP战略价值

本文深入剖析AI Agent架构的五大核心要素:大模型(认知基石)、提示词(战略指令)、工具(行动接口)、Agent本体(执行载体)与MCP(策略中枢)。这五者构成"智能闭环",缺一不可。MCP作为编排治理核心,将大模型的认知能力转化为实际行动,通过任务规划、资源管理、多Agent协作与错误处理,实现从"感知"到"行动"的完整闭环,是AI从认知模型走向智能实体的关键指挥中枢。

2025-11-17 13:46:58 706

原创 AI Agent开发中MCP与API的完美搭配:避免滥用陷阱,提升开发效率

MCP是AI与外部工具交互的"通用适配器",与API不是替代关系而是互补。MCP擅长灵活决策和自主工具发现,适合AI主导场景;API则提供高效、可控的确定性执行。开发中应避免盲目滥用MCP处理简单任务或复杂场景,而应根据需求合理搭配:用MCP搭建决策层,API负责执行层,实现开发效率与性能的平衡。

2025-11-13 11:47:33 523

原创 知识库×数据库融合:打造企业AI智能体系统,从“问知识“到“问数据“的完整指南

文章探讨了企业AI一体化平台的核心价值,强调知识库与数据库的融合是构建完整智能体的关键。通过AskTable与知识库平台的互补合作,实现从文档到数据的无缝衔接,形成统一智能体中枢。这种"用户只需对一个智能体说话,背后多智能体协同"的架构,既保证了企业级安全可控,又实现了真正的AI落地,让AI不仅能查文档,还能分析业务、生成决策。

2025-11-13 11:46:42 766

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除