自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1193)
  • 收藏
  • 关注

原创 一文读懂大模型训练全流程:从文本到智能的7个关键步骤

本文详细解析了大语言模型的完整训练流程,包括输入处理(分词、嵌入、位置编码)、解码器层结构(多头自注意力与前馈网络)、输出预测、反向传播,以及监督微调(SFT)、奖励建模(RM)和强化学习(PPO+RLHF)三阶段对齐技术。同时介绍了DPO替代方案及工程细节,揭示了GPT、Llama等模型从语言建模到人类对齐的技术演进。

2026-01-30 19:19:12 338

原创 大模型技术栈全解析:10个核心概念,让你的AI产品不再瞎指挥

本文详细介绍了AI产品开发必须掌握的10个核心概念:RAG检索增强生成、Agent智能体、函数调用、思维链、向量数据库、量化、蒸馏、LoRA低秩适配、剪枝和推理加速技术。每个概念都从定义、实现方法和应用注意事项进行解析,帮助产品经理和程序员理解AI产品开发基础,避免"瞎指挥"。文章还提供了原型库和PRD模板作为学习资源。

2026-01-30 19:17:43 483

原创 Transformer位置嵌入详解:从基础到RoPE解决词序感知难题

本文介绍Transformer模型中解决词序感知问题的三种位置嵌入方法:函数编码(sin/cos)、可学习位置嵌入和旋转位置编码(RoPE)。RoPE通过旋转词向量捕捉相对位置关系,配合PI和YaRN扩展方法可处理长文本输入。这些技术使模型能够理解语言中的顺序信息,解决了Transformer无法感知词序的关键缺陷。

2026-01-29 19:03:25 758

原创 ReAct模式详解:让大模型具备推理与行动能力,建议收藏学习

ReAct是一种将推理与行动结合在语言模型中的范式,通过Thought-Action-Observation(TAO)闭环机制实现模型与外部环境交互。该范式可减少幻觉、提高准确性和可解释性,适用于复杂决策环境、知识更新需求等场景。文章详细介绍了ReAct的背景、变体、功能、适用场景及实施方法,并通过代码示例展示如何使用LangChain框架实现ReAct代理,帮助开发者构建智能应用系统。

2026-01-29 19:02:37 543

原创 AI智能体实战:从小白到高手的完整学习路径

本文全面介绍AI智能体的构建与应用,从基础概念到生产级系统。详细解释智能体的ReAct循环工作原理,分析适合智能体的任务类型,系统介绍四大核心设计模式:反思、工具使用、规划和多智能体协作。提供从任务分解、评估方法到安全设置的全流程指导,帮助读者从零开始构建高效可靠的智能系统。

2026-01-28 18:07:55 917

原创 2025最新国产AI大模型排行榜(网站+APP端):收藏必备!从入门到精通的实战指南

本文基于2025年最新数据,全面解析国产AI大模型市场格局。数据显示,DeepSeek在网站端访问量居首,豆包在APP端领先,头部互联网企业占据竞争优势。文章建议普通用户可根据使用场景选择:网站端优先DeepSeek,手机端推荐豆包AI。这两款产品拥有强大技术和丰富用户经验,可满足大多数用户需求,是入门大模型的理想选择。

2026-01-28 18:07:05 597

原创 小白也能上手!程序员必备的AI智能体低代码平台搭建全攻略

文章介绍了利用低代码平台构建AI智能体的方法与实践,分析低代码平台价值:降低门槛、提升效率、提供可视化调试和标准化最佳实践。详细对比三大平台(Dify、n8n、Coze)的特点与局限,给出选型建议:快速原型选Coze,企业级应用选Dify,深度集成选n8n。强调低代码与代码开发互补,可根据项目需求采用混合开发模式。

2026-01-24 19:11:44 638

原创 一文搞懂Transformer:大模型核心架构详解教程

本文介绍全面的Transformer学习教程,从基础概念到实战应用共分五章。讲解Transformer作为Seq2Seq模型的改进和注意力机制原理,深入解析Encoder和Decoder结构细节,通过机器翻译项目实战巩固理解。强调每个结构设计都有其原理,建议多看几遍以加深对这一大模型核心架构的理解,阅读一遍约需1-2小时。

2026-01-22 18:54:47 880

原创 突破RAG系统瓶颈:多路召回架构设计与实践

文章指出RAG系统的瓶颈不在模型,而在多路召回设计能力。单一路径(如向量检索)仅解决"相似性"而非"完整性"问题。真正的多路召回应包含语义、词法、结构和关系四种并行视角,通过Query Rewrite创造多条检索入口,Metadata Filter排除不可能的文档,Hybrid Retrieval实现并行检索,最后由Rerank收敛结果。这种架构能构建可解释、可评估、可演进的稳定RAG系统。

2026-01-22 18:53:58 795

原创 2025年RAG技术演进:从简单知识库到上下文引擎的全面解析

2025年RAG技术未因长上下文普及而淘汰,反而演变为更成熟的上下文工程。RAG从简单外挂发展为复杂系统,负责数据治理、索引和供给。技术重点从Prompting转向Context Engineering,架构实现搜索与阅读解耦,形态向RAR、Agentic RAG和Memory-Augmented RAG演进,成为Agent的通用上下文引擎。企业需构建强大Context Engine作为AI时代的基础设施。

2026-01-14 16:21:47 1058

原创 为什么你的RAG系统越聪明越不稳定?多路召回才是真正解决方案

RAG系统仅依赖向量检索会导致不稳定、不可预测。真实问题需要完整解决方案,而非单一路径召回。多路召回架构包括Query Rewrite、Intent Gate、Metadata Filter、Hybrid Retrieval、Rerank等组件,它们互补而非竞争。Metadata Filter解决逻辑可行性问题,是系统下限保障。多路召回使系统可解释、可评估、可演进,是RAG系统成熟的标志。

2026-01-14 16:20:55 839

原创 大模型新纪元:2025 Agent元年技术解析,AI开发者必学收藏指南

文章预测2025年为"Agent元年",指出大模型面临"算力墙"问题,边际收益递减,而AI Agent成为技术落地的合理路径。当前Agent产品因ROI不平衡受质疑,未来将向"自主智能体"发展,需两年时间实现技术突破,涉及推理加速、模型压缩、数据标准化等方向。尽管面临质疑,这些技术革新预示着下一轮AI爆发的前兆,将重塑编程和各类工作流程。

2026-01-13 15:28:12 489

原创 构建大模型智能体:从基础概念到主流框架的全面指南

本文系统介绍了大模型智能体(Agent)的核心概念、架构设计与实现方法。详细解析了PEAS模型、智能体循环、提示工程等基础理论,对比了ReAct、Plan-and-Solve、Reflection等主流架构,并深入分析了AutoGen、AgentScope、CAMEL、LangGraph等开发框架的特点与应用场景。同时介绍了低代码平台和本地推理工具,为开发者构建高性能智能体系统提供了全面的指导。

2026-01-13 15:27:08 320

原创 Ollama × 魔搭社区:超简单的大模型本地部署方案

随着大模型的不断发展,小参数模型的能力也在逐渐进步,就拿阿里最新开源的qwen3来说,其中有负责多模态的qwen3-vl系列和专为代码优化的qwen3-code系列等,这些不同使用场景中都有开源的小参数模型来方便我们本地部署。

2026-01-07 18:09:40 925

原创 从大模型到多模态,图文混排Agent彻底起飞~

上周是智谱的多模态开源周,从GLM 4.6v到Autoglm...看到官方的博客,第一眼比较吸引我的,不是模型本身,是他们给的一个使用场景 - **图文并排**。上传一份 PDF 论文,它能生成一篇图文混排的解读文章,而且效果非常好。图片位置精准,上下文衔接自然,完全不像是机械拼接的。

2026-01-07 18:08:52 916

原创 小白也能懂的AI智能体记忆系统:形式-功能-动态三维框架详解

本文系统综述了AI智能体记忆系统研究进展,提出"形式-功能-动态"三维分类框架。文章探讨记忆作为智能体核心能力的重要性,详细分析三种记忆形式(令牌级、参数化、潜在记忆)、三类功能角色(事实、经验、工作记忆)及其动态演化机制,为智能体研究提供理论基础,并讨论未来挑战与应用前景。

2025-12-31 18:24:38 1027

原创 AI Agent工程现状报告,企业部署数据与学习指南,建议收藏

AI Agent工程现状报告显示,超57%企业已将Agent投产,客服与数据分析为主要应用场景。质量是最大挑战,可观测性和评估体系成为标配。多模型策略主导市场,编码Agent领跑日常应用。Agent工程正从新兴概念发展为成熟学科,企业关注点从成本转向让Agent运行良好。

2025-12-31 18:23:29 870

原创 多模态推荐系统实战:淘宝闪购团队带你从零学习大模型在推荐系统中的应用

本文详细介绍了推荐系统从传统ID特征向多模态内容特征的演进历程,梳理了多模态表征技术的发展脉络,并分享了淘宝闪购首页店铺推荐场景下的多模态推荐系统实践。文章重点阐述了三阶段训练策略在解决多模态特征与传统ID特征融合问题上的有效性,最后对生成式推荐的前沿探索进行了展望。

2025-12-23 15:55:47 1057

原创 Agent驱动的工作流开发新范式:颠覆传统编程,效率提升10倍

本文介绍了一种基于Agent驱动的工作流开发新模式,颠覆传统"先建模,后执行"的思维,转向"先定义目标,后自组织执行"。该模式具有参数自组织、上下文自感知、无需固定流程编排等优势,能大幅简化开发流程,降低维护成本。通过将Agent作为底层框架而非节点,这种范式重塑了工作流开发,代表了未来软件开发的新方向。

2025-12-23 15:54:40 1022

原创 大模型+RAG+Text2SQL:应急管理安全生产智能问答系统实战全流程

文章详细介绍了基于LlamaIndex框架构建的应急管理安全生产智能问答系统,采用Agent+RAG+Text2SQL技术架构。系统整合非结构化文档和结构化数据,通过混合查询架构实现知识检索与数据库查询的智能切换,并包含句子拆分、自动质量评估和回退机制等功能。作者分享了数据整理、索引建立、查询引擎构建等关键步骤及实战经验,为开发类似智能问答系统提供了完整的技术路线和解决方案。

2025-12-23 15:53:22 911

原创 LangChain多智能体协作实战:从零构建研究-报告团队系统

本文详细介绍了如何使用LangChain构建多智能体协作系统,通过TeamState设计数据流转,利用LangGraph架构实现专业分工、动态循环和质量控制。文章从简单的研究员-报告员顺序协作入手,逐步引入协调员实现动态协作,提供了完整代码示例和调试技巧,帮助开发者掌握多智能体系统的核心设计思想和实现方法。

2025-12-23 15:52:05 716

原创 LLM智能体完全指南:从传统AI到通用智能助手的跨越

文章介绍了大语言模型智能体(LLM Agent)与传统智能体的本质区别。LLM Agent以语言为通用接口,具有通用化、语言驱动和推理能力强的特点,包含感知系统、大语言模型、规划系统等7个核心组件。文章还探讨了多智能体协作,对比了AutoGen和CrewAI两种框架的设计范式,指出LLM智能体代表了AI发展的重要方向,实现了从专用系统到通用助手的跨越。

2025-12-20 17:40:51 1125

原创 RAG与知识图谱技术深度解析:从多模态应用到ESG知识图谱构建

文章介绍两大技术主题:一是组合式多模态RAG技术的全面梳理,涵盖不同输入输出组合、核心流程和训练策略;二是OntoMetric方法,采用"结构感知分割+本体引导抽取+两阶段验证"思路,解决ESG知识图谱构建中的实体不一致、关系幻觉等问题。

2025-12-20 17:40:12 661

原创 大模型赋能终端:gemini-cli源码剖析与AI Agent构建指南

本文深度解析Google gemini-cli源码,揭示大语言模型如何重塑命令行终端成为AI协作界面。通过解构其Agent内核、ReAct工作流、工具调用与上下文管理等核心模块,探讨可复用架构设计、LLM动态调度范式及人机共创模式。文章为开发者构建终端Agent提供系统化参考,并展望了与操作系统集成、多智能体协作的未来发展方向。

2025-12-09 10:36:49 1198

原创 从LLM+工具循环到深度智能:Agents 2.0核心思想与LangChain实现,程序员必学收藏指南

深度Agent(Agents 2.0)通过四大支柱(规划、委派、持久记忆、人类在环)解决浅层Agent的状态短暂和上下文溢出问题,实现从"LLM+工具循环"到"深度智能"的范式迁移。LangChain的Deep Agents基于LangGraph提供有状态编排、检查点等能力,支持长周期复杂任务与可恢复执行,适用于研究、异步编码等场景,但需权衡子代理与记忆调用带来的成本。

2025-12-09 10:34:28 610

原创 大模型智能体(Agent)从入门到实践,小白也能学会的实战指南

本文全面介绍大语言模型驱动的智能体(Agent),包括定义、类型、工作原理和应用模式。通过构建智能旅行助手的实践案例,展示"感知-思考-行动-观察"循环机制及工具调用技术。探讨智能体作为开发者工具和自主协作者两种模式,对比Workflow与Agent差异。为读者提供从理论到实践的完整入门路径。

2025-12-05 18:41:07 1050

原创 AI Agent框架全解析:8大主流平台对比,助小白和程序员快速入门大模型

本文全面对比分析了8个主流AI Agent框架,包括LangChain、LlamaIndex、Dify、FastGPT等。从技术栈、开发门槛、核心优势到适用场景进行详细解析,并提供了按使用场景、团队能力和私有化需求进行选型的决策指南。无论你是零基础小白还是资深开发者,都能根据自身需求找到最适合的AI Agent解决方案,快速搭建大模型应用。

2025-12-05 18:39:59 870

原创 上下文工程:构建更高效AI智能体的核心技能

本文探讨上下文工程——提示工程的演进,关注如何有效筛选和管理AI智能体的上下文信息。LLM注意力预算有限,信息过载会导致性能下降。文章介绍了高效上下文的构成要素(系统提示、工具设计、示例选择)和长周期任务管理技术(压缩、结构化笔记、子智能体架构)。核心原则是用最少的高信号token,最大化达成目标的可能性,成为构建可靠高效AI智能体的必备技能。

2025-11-29 11:24:59 1019

原创 大模型优化利器RAG:小白入门到企业应用全解析

RAG(检索增强生成)是优化大模型的方法,通过引用外部知识库提升输出质量。它包含检索(从知识库获取相关信息)、增强(整合查询与知识)和生成(输入LLM产生输出)三步骤。RAG具有提高准确性、降低成本、减少AI幻觉等优势,适用于企业知识管理、客服机器人和专业知识问答等场景,是让大模型更贴合企业实际需求的有效技术。

2025-11-29 11:15:14 916

原创 大模型Agent开发入门到精通:工作流、MCP协议与自主智能体

本文介绍了大模型Agent开发的核心概念与技术,包括通过提示词设计实现模型输出格式化,工作流与MCP协议使大模型能调用外部API,以及Dify、Coze等开发平台的应用。重点阐述了Agent相比工作流的自主性,其包含Profile、Memory、Planning和Action四大组件,能够主动思考并分解任务解决问题。文章旨在为开发专业知识问答智能助手提供技术基础,并预告下一章将介绍RAG技术的应用。

2025-11-28 14:34:04 429

原创 大模型RAG效果差?掌握这7种分块策略,让你的收藏夹不再吃灰

文章详解了RAG系统中七种分块策略,强调分块是影响效果的关键因素。建议从512 tokens搭配10-15%重叠率开始尝试,优先考虑递归分块和句子分块。正确选择分块策略能显著提升检索准确性和生成质量,是优化RAG系统的重要环节。

2025-11-28 14:32:55 406

原创 大模型微调新范式:LoRA与QLoRA技术详解,轻松掌握90%成本优化方案

本文详解大语言模型轻量化微调技术LoRA的核心原理:通过矩阵分解将大权重矩阵拆分为两个小矩阵,大幅减少可训练参数量。LoRA冻结原始权重仅优化低秩矩阵,QLoRA引入量化技术进一步降低内存占用。这种技术不仅减少计算资源需求,还实现了适配器概念的灵活应用,为不同下游任务提供高效解决方案,是当前大模型微调领域的重要技术突破。

2025-11-27 13:57:54 677

原创 从零开始学习LLM大模型:Java+AI架构转型指南,告别中年危机

本文介绍了尼恩架构团队的《LLM大模型学习圣经》内容体系,重点讲解了RAGFlow技术架构及其在企业级应用中的价值。通过多个成功案例展示了Java+AI架构学习对职业转型和薪资增长的助力,详细解析了RAGFlow的深度文档理解、智能分块策略和检索增强生成等核心技术,为程序员提供了架构转型的实用指南和学习路径。

2025-11-27 13:56:47 1011

原创 大模型微调技术全解析:从LORA到QLORA,小白也能轻松掌握

文章系统介绍了11种大模型参数高效微调技术,包括前缀调优、提示调优、P-Tuning v2、LORA系列、QLORA、LongLORA等创新方法。这些技术通过冻结预训练模型参数,仅优化少量特定参数或向量,显著降低计算资源消耗,同时保持模型性能,为不同场景的大模型应用提供了多样化的高效解决方案。

2025-11-26 14:19:02 1204

原创 如何为 RAGFlow 添加新的数据源?

本指南面向希望为 RAGFlow 扩展数据源能力的社区开发者,旨在以专业、可复用的流程说明如何实现并接入新的 connector。RAGFlow 的 connector 框架深受 Onyx 开源项目启发,特此致谢。在实际使用中,除了从本地文件系统导入文件,RAGFlow 还需要从大量异构系统中获取数据。

2025-11-26 14:17:30 1190

原创 大模型时代,从“提示词工程“到“问题架构“:AI越强,你的价值越大!

随着大模型推理能力提升,传统提示词工程已失效。文章提出"问题架构"新思维,强调从拼凑词汇转向拆解逻辑,定义约束边界,培养结构化、算法和评估思维。AI越强大,越需要人类定义问题、设定边界、对结果负责。真正的价值不在于使用AI工具,而在于成为问题的定义者和结果的负责人,从"传话筒"进化为"架构师"。

2025-11-25 15:37:08 602

原创 大模型上下文工程实践:从RAG到记忆架构,一篇教程全掌握,值得收藏

本文深入探讨上下文工程这一大模型应用关键技术,重点解析检索增强生成(RAG)的工作原理、核心优势及高级模式,详细介绍三层记忆架构(短期、长期、暂存区)和记忆增强智能体的设计与应用。文章分析了上下文工程面临的污染、干扰、混淆和冲突等问题,并提供了相应的解决方案,帮助开发者构建能处理长对话、调用多源数据的高效能AI系统。

2025-11-25 15:32:33 579

原创 从零搭建大模型环境实战:KTransformer安装与显卡兼容性避坑指南

作者分享使用KTransformer搭建大模型环境的完整经历,详细记录了硬件配置选择、Ubuntu系统安装、KTransformer部署及模型加载过程。重点分析了NVIDIA显卡架构兼容性问题,特别是20系显卡无法使用关键优化功能的困境,以及通过CPU推理性能不足的实际体验。文章为想要搭建大模型环境的开发者提供了详细步骤和避坑指南。

2025-11-24 17:49:05 1061

原创 大模型工具调用与智能体实现:从入门到精通

文章介绍了基于生成式大模型开发智能体的两种工具调用方法:一是通过特别设计提示词引导模型输出结构化指令;二是利用大模型原生的函数调用机制。详细对比了两种方法的适用场景、稳定性、开发成本等差异,并提供了抽象适配器、服务端校验、可观测性等最佳实践。开发者可根据具体需求选择适合的方法,实现大模型与外部工具的有机结合,构建具备推理分析能力的智能体应用。

2025-11-24 17:47:47 1304 1

原创 一文搞懂大模型微调:PT/SFT/DPO技术详解与应用场景

文章详解了大模型微调的三种技术:PT、SFT和DPO,包括它们的工作原理、数据要求和适用场景。文章指出微调成本高、技术门槛高,建议优先考虑提示词工程和RAG等替代方案。只有在特定领域专业知识、特殊输出格式、私有数据深度理解和高性能要求时才考虑微调,并推荐了适合不同技术水平的平台。

2025-11-22 18:14:51 1059

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除