08单细胞分析2025-拟时间scVelo分析

测成熟和未成熟的RNA动力学 velocyto发育的起点和终点

1.建立新的环境scvelo分析的环境来分析loom文件

conda info -e

conda create -n scvelo310 python=3.10

conda activate scvelo310

conda install -c conda-forge scvelo

conda install ipykernel

python -m ipykernel install --user --name scvelo310 --display-name scvelo310

conda install -c anaconda notebook

conda install -c conda-forge scanpy python-igraph leidenalg

jupyter notebook --no-browser

2.分析代码:

import scvelo as scv
import scanpy as sc
scv.settings.verbosity = 3  
# show errors(0), warnings(1), info(2), hints(3)
scv.settings.presenter_view = True  
# set max width size for presenter view
scv.set_figure_params('scvelo')  
# for beautified visualization
adata=sc.read("./bcoaneiD201.loom",cache=False)
adata
scv.pl.proportions(adata)
scv.pp.filter_and_normalize(adata, min_shared_counts=30, n_top_genes=2000)
scv.pp.moments(adata, n_pcs=30, n_neighbors=30)
scv.tl.velocity(adata)
scv.tl.velocity_graph(adata)
scv.pp.neighbors(adata, n_neighbors=10, n_pcs=40)
sc.tl.leiden(adata)
sc.tl.umap(adata)
scv.pl.umap(adata, color='leiden')
scv.pl.velocity_embedding_stream(adata, basis='umap', color=['leiden'])
scv.pl.velocity_embedding_stream(adata, basis='umap', color=['initial_size_spliced'])
scv.pl.velocity_embedding(adata, arrow_length=3, arrow_size=2, dpi=120, color=['leiden'])
scv.pl.velocity(adata, ['CCL3'], dpi=120, color=['leiden'])
scv.pl.scatter(adata, 'CCL3', color=['leiden', 'velocity'])
scv.tl.rank_velocity_genes(adata, groupby='leiden', min_corr=.3)
#df = scv.DataFrame(adata.uns['rank_velocity_genes']['names'])
import pandas as pd

df = pd.DataFrame(adata.uns['rank_velocity_genes']['names'])
df.head()
scv.tl.velocity_confidence(adata)
keys = 'velocity_length', 'velocity_confidence'
scv.pl.scatter(adata, c=keys, cmap='coolwarm', perc=[5, 95])
df = adata.obs.groupby('leiden')[keys].mean().T
df.style.background_gradient(cmap='coolwarm', axis=1)
scv.pl.velocity_graph(adata, threshold=.1,color=['leiden'])
scv.tl.velocity_pseudotime(adata)
scv.pl.scatter(adata, color='velocity_pseudotime', cmap='gnuplot')
adata.uns['neighbors']['distances'] = adata.obsp['distances']
adata.uns['neighbors']['connectivities'] = adata.obsp['connectivities']
scv.tl.paga(adata, groups='leiden')
scv.pl.paga(adata, basis='umap', size=50, alpha=.1,
            min_edge_width=2, node_size_scale=1.5)

记录 简要的学习 成长 体会 心得 总结 思路 心流 链接 资料  懂得都懂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值